دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی فیزیکی ویرایش: 2nd Edition نویسندگان: Russel S. Drago سری: ISBN (شابک) : 0030751764 ناشر: Surfside Scientific Publishers سال نشر: 1992 تعداد صفحات: 766 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Physical Methods for Chemists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای فیزیکی برای شیمیدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این تجدید نظر در متن/مرجع سال 1977 دراگو با عنوان روشهای فیزیکی در شیمی همچنان به شیمیدانان بدون پیشزمینه ریاضی پیشرفته نحوه استفاده از روشهای طیفسنجی را با خواندن در مورد چگونگی حل مسائل با آنها آموزش میدهد. این نسخه شامل مطالب به روز شده در مورد بازنمایی ها در نظریه گروه، اصول تبدیل فوریه در NMR و IR، طیف سنجی دو بعدی، تکنیک های سطح، و تجزیه و تحلیل در طیف سنجی جرمی است. حاشیه نویسی دارای حق چاپ توسط Book News, Inc., Portland, OR
This revision of Drago's 1977 text/reference entitled Physical methods in chemistry continues to teach chemists without an advanced mathematical background how to use spectroscopic methods by reading about how problems have been solved with them. This edition includes updated material on representations in group theory, principles of Fourier transform in NMR and IR, two-dimensional spectroscopy, surface techniques, and analysis in mass spectroscopy. Annotation copyrighted by Book News, Inc., Portland, OR
Title Preface Contents 1. Symmetry and the Point Groups 1-1 DEFINITION OF SYMMETRY 1-2 SYMMETRY ELEMENTS The Center of Symmetry, or Inversion Center The Identity The Rotation Axis The Mirror Plane or Plane of Symmetry The Rotation-Reflection Axis; Improper Rotations 1-3 POINT GROUPS 1-4 SPACE SYMMETRY 1-5 SOME DEFINITIONS AND APPLICATIONS OF SYMMETRY CONSIDERATIONS Products or Combinations of Symmetry Operations Equivalent Symmetry Elements and Equivalent Atoms Optical Activity Dipole Moments REFERENCES CITED ADDITIONAL READING EXERCISES 2. Group Theory and the Character Tables 2-1 INTRODUCTION 2-2 RULES FOR ELEMENTS THAT CONSTITUTE A GROUP 2-3 GROUP MULTIPLICATION TABLES Properties of the Multiplication Tables Similarity Transforms Classes of Elements 2-4 SUMMARY OF THE PROPERTIES OF VECTORS AND MATRICES Vectors Matrices 2-5 REPRESENTATIONS; GEOMETRIC TRANSFORMATIONS 2-6 IRREDUCIBLE REPRESENTATIONS 2-7 CHARACTER TABLES 2-8 NON-DIAGONAL REPRESENTATIONS Degenerate Representations 2-9 MORE ON CHARACTER TABLES 2-10 MORE ON REPRESENTATIONS 2-11 SIMPLIFIED PROCEDURES FOR GENERATING AND FACTORING TOTAL REPRESENTATIONS; THE DECOMPOSITION FORMULA 2-12 DIRECT PRODUCTS ADDITIONAL READING EXERCISES 3. Molecular Orbital Theory and Its Symmetry Aspects Introduction 3-1 OPERATORS 3-2 A MATRIX FORMULATION OF MOLECULAR ORBITAL CALCULATIONS 3-3 PERTURBATION THEORY Symmetry in Quantum Mechanics 3-4 WAVE FUNCTIONS AS A BASIS FOR IRREDUCIBLE REPRESENTATIONS 3-5 PROJECTING MOLECULAR ORBITALS Molecular Orbital Calculations 3-6 HUCKEL PROCEDURE 3-7 PROPERTIES DERIVED FROM WAVE FUNCTIONS 1. ELECTRON DENSITY AT AN ATOM r, qr 2. FORMAL CHARGE, δ 3. BOND ORDER, PAB 3-8 EXTENDED HOCKEL PROCEDURE 1. NET ATOMIC POPULATION 2. OVERLAP POPULATION 3. GROSS ATOMIC POPULATION 4. FORMAL CHARGE 3-9 SCF-INDO (INTERMEDIATE NEGLECT OF DIFFERENTIAL OVERLAP) 3-10 SOME PREDICTIONS FROM M.O. THEORY ON ALTERNATELY DOUBLE BONDED HYDROCARBONS 3-11 MORE ON PRODUCT GROUND STATE WAVE FUNCTIONS REFERENCES CITED ADDITIONAL READING COMPILATIONS EXERCISES 4. General Introduction to Spectroscopy 4-1 NATURE OF RADIATION 4-2 ENERGIES CORRESPONDING TO VARIOUS KINDS OF RADIATION 4-3 ATOMIC AND MOLECULAR TRANSITIONS 4-4 SELECTION RULES 4-5 RELAXATION AND CHEMICAL EXCHANGE INFLUENCES ON SPECTRAL LINE WIDTH General Applications 4-6 DETERMINATION OF CONCENTRATION 4-7 ISOSBESTIC POINTS 4-8 JOB'S METHOD OF ISOMOLAR SOLUTIONS 4-9 "FINGERPRINTING" REFERENCES CITED EXERCISES 5. Electronic Absorption Spectroscopy Introduction 5-1 VIBRATIONAL AND ELECTRONIC ENERGY LEVELS IN A DIATOMIC MOLECULE 5-2 RELATIONSHIP OF POTENTIAL ENERGY CURVES TO ELECTRONIC SPECTRA 5-3 NOMENCLATURE Assignment of Transitions 5-4 SPIN-ORBIT COUPLING 5-5 CONFIGURATION INTERACTION 5-6 CRITERIA TO AID IN BAND ASSIGNMENT The Intensity of Electronic Transitions 5-7 OSCILLATOR STRENGTHS 5-8 TRANSITION MOMENT INTEGRAL 5-9 DERIVATION OF SOME SELECTION RULES 5-10 SPECTRUM OF FORMALDEHYDE 5-11 SPIN-ORBIT AND VIBRONIC COUPLING CONTRIBUTIONS TO INTENSITY 5-12 MIXING OF d AND p ORBITALS IN CERTAIN SYMMETRIES 5-13 MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE CONTRIBUTIONS TO INTENSITY 5-14 CHARGE TRANSFER TRANSITIONS 5-15 POLARIZED ABSORPTION SPECTRA Applications 5-16 FINGERPRINTING SATURATED MOLECULES CARBONYL COMPOUNDS INORGANIC SYSTEMS 5-17 MOLECULAR ADDITION COMPOUNDS OF IODINE 5-18 EFFECT OF SOLVENT POLARITY ON CHARGETRANSFERSPECTRA 5-19 STRUCTURES OF EXCITED STATES Optical Rotary Dispersion, Circular Dichroism, and Magnetocircular Dichroism 5-20 INTRODUCTION 5-21 SELECTION RULES 5-22 APPLICATIONS 5-23 MAGNETOCIRCULAR DICHROISM REFERENCES CITED ADDITIONAL REFERENCES EXERCISES 6. Vibrational and Rotation Spectroscopy: Infrared, Raman, and Microwave Introduction 6-1 HARMONIC AND ANHARMONIC VIBRATIONS 6-2 ABSORPTION OF RADIATION BY MOLECULARVIBRATIONS-SELECTION RULES 6-3 FORCE CONSTANT Vibrations in a Polyatomic Molecule 6-4 THE 3N- 6(5) RULE 6-5 EFFECTS GIVING RISE TO ABSORPTION BANDS 6-6 NORMAL COORDINATE ANALYSES AND BAND ASSIGNMENTS 6-7 GROUP VIBRATIONS AND THE LIMITATIONS OF THIS IDEA Raman Spectroscopy 6-8 INTRODUCTION 6-9 RAMAN SELECTION RULES 6-10 POLARIZED AND DEPOLARIZED RAMAN LINES 6-11 RESONANCE RAMAN SPECTROSCOPY Symmetry Aspects of Molecular Vibrations 6-12 SIGNIFICANCE OF THE NOMENCLATURE USED TO DESCRIBE VARIOUS VIBRATIONS 6-13 USE OF SYMMETRY CONSIDERATIONS TO DETERMINE THE NUMBER OF ACTIVE INFRARED AND RAMAN LINES 6-14 SYMMETRY REQUIREMENTS FOR COUPLING COMBINATION BANDS, AND FERMI RESONANCE 6-15 MICROWAVE SPECTROSCOPY 6-16 ROTATIONAL RAMAN SPECTRA Applications of Infrared and Raman Spectroscopy 6-17 PROCEDURES a. In Infrared b. In Raman 6-18 FINGERPRINTING 6-19 SPECTRA OF GASES 1. Diatomic Molecules. 2. Linear Polyatomic Molecules. 3. Non-linear Polyatomic Molecules. 6-20 APPLICATION OF RAMAN AND INFRARED SELECTION RULES TO THE DETERMINATION OF INORGANIC STRUCTURES Bond Strength Frequency Shift Relations 6-21 CHANGES IN THE SPECTRA OF DONOR MOLECULES UPON COORDINATION 6-22 Change in Spectra Accompanying Change in Symmetry upon Coordination REFERENCES CITED ADDITIONAL REFERENCES EXERCISES 7. Nuclear Magnetic Resonance Spectroscopy - Elementary Aspects Introduction Classical Description of the NMR Experiment-The Bloch Equations 7-1 SOME DEFINITIONS 7-2 BEHAVIOR OF A BAR MAGNET IN A MAGNETIC FIELD 7-3 ROTATING AXIS SYSTEMS 7-4 MAGNETIZATION VECTORS AND RELAXATION 7-5 THE NMR TRANSITION 7-6 THE BLOCH EQUATIONS 7-7 THE NMR EXPERIMENT The Quantum Mechanical Description ofthe NMR Experiment 7-8 PROPERTIES OF I 7-9 TRANSITION PROBABILITIES Relaxation Effects and Mechanisms 7-10 MEASURING THE CHEMICAL SHIFT 7-11 INTERPRETATION OF THE CHEMICAL SHIFT a. Local Effects b. Remote Effects 7-12 INTERATOMIC RING CURRENTS 7-13 EXAMPLES OF CHEMICAL SHIFT INTERPRETATION Spin-Spin Splitting 7-14 EFFECT OF SPIN-SPIN SPLITTING ON THE SPECTRUM 7-15 DISCOVERING NON-EQUIVALENT PROTONS 7-16 EFFECT OF THE NUMBER AND NATURE OF THE BONDS ON SPIN-SPIN COUPLING 7-17 SCALAR SPIN-SPIN COUPLING MECHANISMS 7-18 APPLICATIONS OF SPIN-SPIN COUPLING TO STRUCTURE DETERMINATION Factors Influencing the Appearance of the NMR Spectrum 7-19 EFFECT OF FAST CHEMICAL REACTIONS ON THE SPECTRUM 7-20 QUANTUM MECHANICAL DESCRIPTION OF COUPLING 7-21 EFFECTS OF THE RELATIVE MAGNITUDES OF J AND Δ ON THE SPECTRUM OF AN AB MOLECULE 7-22 MORE COMPLICATED SECOND-ORDER SYSTEMS 7-23 DOUBLE RESONANCE AND SPIN-TICKLING EXPERIMENTS 7-24 DETERMINING SIGNS OF COUPLING CONSTANTS 7-25 EFFECTS ON THE SPECTRUM OF NUCLEI WITH QUADRUPOLE MOMENTS REFERENCES CITED COMPILATIONS OF CHEMICAL SHIFTS EXERCISES 8. Dynamic and Fourier Transform NMR Introduction Evaluation of Thermodynamic Data with NMR NMR Kinetics 8-1 RATE CONSTANTS AND ACTIVATION ENTHALPIES FROM NMR 8-2 DETERMINATION OF REACTION ORDERS BY NMR 8-3 SOME APPLICATIONS OF NMR KINETIC STUDIES 8-4 INTRAMOLECULAR REARRANGEMENTS STUDIED BY NMR-FLUXIONAL BEHAVIOR 8-5 SPIN SATURATION LABELING 8-6 THE NUCLEAR OVERHAUSER EFFECT Fourier Transform NMR 8-7 PRINCIPLES 8-8 OPTIMIZING THE FTNMR EXPERIMENT 8-9 THE MEASUREMENT OF T1 BY FTNMR 8-10 USE OF T1 FOR PEAK ASSIGNMENTS 8-11 NMR OF QUADRUPOLAR NUCLEI Applications and Strategies in FTNMR 8-12 13C 8-13 OTHER NUCLEI More on Relaxation Processes 8-14 SPECTRAL DENSITY Multipulse Methods 8-15 INTRODUCTION 8-16 SPIN ECHOES 8-17 SENSITIVITY-ENHANCEMENT METHODS 8-18 SELECTIVE EXCITATION AND SUPPRESSION 8-19 TWO-DIMENSIONAL NMR NMR in Solids and Liquid Crystals 8-20 DIRECT DIPOLAR COUPLING 8-21 NMR STUDIES OF SOLIDS 8-22 NMR STUDIES IN LIQUID CRYSTAL SOLVENTS 8-23 HIGH RESOLUTION NMR OF SOLIDS REFERENCES CITED ADDITIONAL REFERENCES EXERCISES 9. Electron Paramagnetic Resonance Spectroscopy Introduction 9-1. Principles Nuclear Hyperfine Splitting 9-2. The Hydrogen Atom 9-3. Presentation of the Spectrum 9-4. Hyperfine Splittings in Isotropic Systems Involving More than One Nucleus 9-5. Contributions to the Hyperfine Coupling Constant in Isotropic Systems Anisotropic Effects 9-6 ANISOTROPY IN THE g VALUE 9-7 ANISOTROPY IN THE HYPERFINE COUPLING 9-8 THE EPR OF TRIPLET STATES 9-9 NUCLEAR QUADRUPOLE INTERACTION 9-10 LINE WIDTHS IN EPR 9-11 THE SPIN HAMILTONIAN 9-12 MISCELLANEOUS APPLICATIONS REFERENCES CITED ADDITIONAL REFERENCES* EXERCISES 10. Electronic Structure and Spectra of Transition Metal Ions Introduction Free Ion Electronic States 10-1 ELECTRON-ELECTRON INTERACTIONS AND TERM SYMBOLS 10-2 SPIN-ORBIT COUPLING IN FREE IONS Crystal Fields 10-3 EFFECTS OF LIGANDS ON THE d ORBITAL ENERGIES 10-4 SYMMETRY ASPECTS OF THE d-ORBITAL SPLITTING BY LIGANDS 10-5 DOUBLE GROUPS 10-6 THE JAHN-TELLER EFFECT 10-7 MAGNETIC COUPLING IN METAL ION CLUSTERS Applications 10-8 SURVEY OF THE ELECTRONIC SPECTRA OF Oh COMPLEXES d1 and d9 Complexes d2, d7, d3, and d8 Configurations 10-9 CALCULATION OF Dq AND β FOR Oh Ni(II) COMPLEXES 10-10 EFFECT OF DISTORTIONS ON THE d-ORBITAL ENERGY LEVELS 10-11 STRUCTURAL EVIDENCE FROM THE ELECTRONIC SPECTRUM Bonding Parameters from Spectra 10-12 σ AND π BONDING PARAMETERS FROM THE SPECTRA OF TETRAGONAL COMPLEXES 10-13 THE ANGULAR OVERLAP MODEL Miscellaneous Topics Involving Electronic Transitions 10-14 ELECTRONIC SPECTRA OF OXO-BRIDGED DINUCLEAR IRON CENTERS 10-15 INTERVALENCE ELECTRON TRANSFER BANDS 10-16 PHOTOREACTIONS REFERENCES CITED EXERCISES 11. Magnetism 11-1 INTRODUCTION 11-2 TYPES OF MAGNETIC BEHAVIOR Diamagnetism Paramagnetism in Simple System where S = =1/2 11-3 VAN VLECK'S EQUATION General Basis of the Derivation Derivation of the Van Vieck Equation Application of the Van Vleck Equation 11-4 APPLICATIONS OF SUSCEPTIBILITY MEASUREMENTS Spin-Orbit Coupling 11-5 INTRAMOLECULAR EFFECTS 11-6 HIGH SPIN-LOW SPIN EQUILIBRIA 11-7 MEASUREMENT OF MAGNETIC SUSCEPTIBILITIES 11-8 SUPERPARAMAGNETISM* REFERENCES CITED EXERCISES 12. NMR of Paramagnetic Substances in Solution 12-1 INTRODUCTION 12-2 PROPERTIES OF PARAMAGNETIC COMPOUNDS 12-3 CONSIDERATIONS CONCERNING ELECTRON SPIN The Expectation Value of Sz,12-4 THE CONTACT SHIFT 12-5 THE PSEUDOCONTACT SHIFT 12-6 LANTHANIDES 12-7 FACTORING THE CONTACT AND PSEUDOCONTACTSHIFTS 12-8 THE CONTACT SHIFT AND SPIN DENSITY 12-9 FACTORS AFFECTING NUCLEAR RELAXATION IN PARAMAGNETIC SYSTEMS Equations for Contact Relaxation Equations for Dipolar Relaxation Equations for Curie Relaxation General Comments Concerning Relaxation 12-10 RELAXOMETRY 12-11 ELECTRONIC RELAXATION TIMES 12-12 CONTRAST AGENTS 12-13 TRENDS IN THE DEVELOPMENT OF PARAMAGNETICNMR The Nuclear Overhauser Effect The Effect of Fast Nuclear Relaxation on 2-D Spectra 12-14 SOME APPLICATIONS Planar-Tetrahedral Equilibria in Nickel Diastereoisomerism Diastereoisomerism and Diastereotopism in Cobalt(i) Group Inequivalence in NiSALMeDPT Ion Pairing Hemin-Imidazole-Cyanide Spin Delocalization in Iron Porphyrins Cobalt-substituted Carbonic Anhydrase 12-15 THE INVESTIGATION OF BIMETALLIC SYSTEMS The 1H nmr of Dimeric Complexes Cu2Co2 Superoxide Dismutase Perspectives in Cluster Investigations Shift Reagents REFERENCES CITED EXERCISES 13. EPR Spectra of Transition Metal Ion Complexes 13-1 INTRODUCTION 13-2 INTERPRETATION OF THE g-VALUES Introduction S = 1/2 Systems with Orbitally Non-degenerate Ground States Systems in which Spin-Orbit Coupling Is Large 13-3 HYPERFINE COUPLINGS AND ZERO FIELD SPLITTINGS Hyperfine and Zero-Field Effects on the Spectral Appearance Contributions to A 13-4 LIGAND HYPERFINE COUPLINGS 13-5 SURVEY OF THE EPR SPECTRA OF FIRST-ROW TRANSITION METAL ION COMPLEXES d1 d2 d3 d4 d5 Low Spin, S = 1/2 d5 High Spin d6 d7 d8 High Spin d9 13-6 THE EPR OF METAL CLUSTERS 13-7 DOUBLE RESONANCE AND FOURIER TRANSFORM EPR TECHNIQUES REFERENCES CITED ADDITIONAL REFERENCES EXERCISES 14. Nuclear Quadrupole Resonance Spectroscopy (NQR) 14-1 INTRODUCTION 14-2 ENERGIES OF THE QUADRUPOLE TRANSITIONS 14-3 EFFECT OF A MAGNETIC FIELD ON THE SPECTRA 14-4 RELATIONSHIP BETWEEN ELECTRIC FIELDGRADIENT AND MOLECULAR STRUCTURE 14-5 APPLICATIONS The interpretation of e2Qq Data Effects of the Crystal Lattice on the Magnitude of e2Qq Structural Information from NQR Spectra 14-6 DOUBLE RESONANCE TECHNIQUES REFERENCES CITED ADDITIONAL REFERENCES EXERCISES 15. Mossbauer Spectroscopy 15-1 INTRODUCTION 15-2 INTERPRETATION OF ISOMER SHIFTS 15-3 QUADRUPOLE INTERACTIONS 15-4 PARAMAGNETIC MOSSBAUER SPECTRA 15-5 MOSSBAUER EMISSION SPECTROSCOPY 15-6 APPLICATIONS REFERENCES CITED SERIES EXERCISES 16. Ionization Methods: Mass Spectrometry, Ion Cyclotron Resonance, Photoelectron Spectroscopy Mass Spectrometry 16-1 INSTRUMENT OPERATION AND PRESENTATION OF SPECTRA 16-2 PROCESSES THAT CAN OCCUR WHEN A MOLECULE AND A HIGH ENERGY ELECTRON COMBINE 16-3 FINGERPRINT APPLICATION 16-4 INTERPRETATION OF MASS SPECTRA 16-5 EFFECT OF ISOTOPES ON THE APPEARANCE OF AMASS SPECTRUM 16-6 MOLECULAR WEIGHT DETERMINATIONS; FIELD IONIZATION TECHNIQUES 16-7 EVALUATION OF HEATS OF SUBLIMATION AND SPECIES IN THE VAPOR OVER HIGH MELTING SOLIDS 16-8 APPEARANCE POTENTIALS AND IONIZATIONPOTENTIALS FTICR/MS 16-9 THE FOURIER TRANSFORM ION CYCLOTRON RESONANCE TECHNIQUE Surface Science Techniques 16-10 INTRODUCTION 16-11 PHOTOELECTRON SPECTROSCOPY XPS UPS 16-12 SIMS (SECONDARY ION MASS SPECTROMETRY) 16-13 LEED, AES, AND HREELS SPECTROSCOPY LEED AES (AUGER ELECTRON SPECTROSCOPY) HREELS 16-14 STM (SCANNING TUNNELING MICROSCOPY) ANDAFM (ATOMIC FORCE MICROSCOPY) EXAFS and XANES 16-15 INTRODUCTION 16-16 APPLICATIONS REFERENCES CITED EXERCISES 17. X-Ray Crystallography 17-1 INTRODUCTION Principles 17-2 DIFFRACTION OF X-RAYS 17-3 REFLECTION AND RECIPROCAL SPACE 17-4 THE DIFFRACTION PATTERN 17-5 X-RAY SCATTERING BY ATOMS AND STRUCTURES 17-6 CRYSTAL GROWTH 17-7 SELECTION OF CRYSTALS 17-8 MOUNTING CRYSTALS Methodology 17-9 DIFFRACTION EQUIPMENT 17-10 DIFFRACTOMETER DATA COLLECTION 17-11 COMPUTERS Some Future Developments 17-12 AREA DETECTORS 17-13 X-RAY VERSUS NEUTRON DIFFRACTION 17-14 SYNCHROTRON RADIATION Symmetry and Related Concerns 17-15 CRYSTAL CLASSES 17-16 SPACE GROUPS 17-17 SPACE-GROUP DETERMINATION 17-18 AVOIDING CRYSTALLOGRAPHIC MISTAKES 17-19 MOLECULAR VERSUS CRYSTALLOGRAPHIC SYMMETRY 17-20 QUALITY ASSESSMENT 17-21 CRYSTALLOGRAPHIC DATA REFERENCES CITED EXERCISES Appendices Appendix A. Character Tables for Chemically Important Symmetry Groups Appendix B. Character Tables for Double Groups Appendix C. Normal Vibration Modes Appendix D. Tanabe and Sugano Diagrams for Oh Fields Appendix E. Calculation of Δ and β for Oh Ni(II) and Td Co(II) Complexes Appendix F. Conversion of Chemical Shift Data Appendix G. Solution of the Secular Determinant for the NMR Coupling of the AB Spin System Index SELECTED CONSTANTS CONVERSION FACTORS PROPERTIES OF SELECTED NUCLEI Blank Page