دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Cahill K
سری:
ISBN (شابک) : 9781108470032, 4185558011879
ناشر: Cambridge University Press
سال نشر: 2019
تعداد صفحات: 779
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Physical mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات فیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface 1 Linear Algebra 1.1 Numbers 1.2 Arrays 1.3 Matrices 1.4 Vectors 1.5 Linear Operators 1.6 Inner Products 1.7 Cauchy–Schwarz Inequalities 1.8 Linear Independence and Completeness 1.9 Dimension of a Vector Space 1.10 Orthonormal Vectors 1.11 Outer Products 1.12 Dirac Notation 1.13 Adjoints of Operators 1.14 Self-Adjoint or Hermitian Linear Operators 1.15 Real, Symmetric Linear Operators 1.16 Unitary Operators 1.17 Hilbert Spaces 1.18 Antiunitary, Antilinear Operators 1.19 Symmetry in Quantum Mechanics 1.20 Determinants 1.21 Jacobians 1.22 Systems of Linear Equations 1.23 Linear Least Squares 1.24 Lagrange Multipliers 1.25 Eigenvectors and Eigenvalues 1.26 Eigenvectors of a Square Matrix 1.27 A Matrix Obeys Its Characteristic Equation 1.28 Functions of Matrices 1.29 Hermitian Matrices 1.30 Normal Matrices 1.31 Compatible Normal Matrices 1.32 Singular-Value Decompositions 1.33 Moore–Penrose Pseudoinverses 1.34 Tensor Products and Entanglement 1.35 Density Operators 1.36 Schmidt Decomposition 1.37 Correlation Functions 1.38 Rank of a Matrix 1.39 Software Exercises 2 Vector Calculus 2.1 Derivatives and Partial Derivatives 2.2 Gradient 2.3 Divergence 2.4 Laplacian 2.5 Curl Exercises 3 Fourier Series 3.1 Fourier Series 3.2 The Interval 3.3 Where to Put the 2pi’s 3.4 Real Fourier Series for Real Functions 3.5 Stretched Intervals 3.6 Fourier Series of Functions of Several Variables 3.7 Integration and Differentiation of Fourier Series 3.8 How Fourier Series Converge 3.9 Measure and Lebesgue Integration 3.10 Quantum-Mechanical Examples 3.11 Dirac’s Delta Function 3.12 Harmonic Oscillators 3.13 Nonrelativistic Strings 3.14 Periodic Boundary Conditions Exercises 4 Fourier and Laplace Transforms 4.1 Fourier Transforms 4.2 Fourier Transforms of Real Functions 4.3 Dirac, Parseval, and Poisson 4.4 Derivatives and Integrals of Fourier Transforms 4.5 Fourier Transforms of Functions of Several Variables 4.6 Convolutions 4.7 Fourier Transform of a Convolution 4.8 Fourier Transforms and Green’s Functions 4.9 Laplace Transforms 4.10 Derivatives and Integrals of Laplace Transforms 4.11 Laplace Transforms and Differential Equations 4.12 Inversion of Laplace Transforms 4.13 Application to Differential Equations Exercises 5 Infinite Series 5.1 Convergence 5.2 Tests of Convergence 5.3 Convergent Series of Functions 5.4 Power Series 5.5 Factorials and the Gamma Function 5.6 Euler’s Beta Function 5.7 Taylor Series 5.8 Fourier Series as Power Series 5.9 Binomial Series 5.10 Logarithmic Series 5.11 Dirichlet Series and the Zeta Function 5.12 Bernoulli Numbers and Polynomials 5.13 Asymptotic Series 5.14 Fractional and Complex Derivatives 5.15 Some Electrostatic Problems 5.16 Infinite Products Exercises 6 Complex-Variable Theory 6.1 Analytic Functions 6.2 Cauchy–Riemann Conditions 6.3 Cauchy’s Integral Theorem 6.4 Cauchy’s Integral Formula 6.5 Harmonic Functions 6.6 Taylor Series for Analytic Functions 6.7 Cauchy’s Inequality 6.8 Liouville’s Theorem 6.9 Fundamental Theorem of Algebra 6.10 Laurent Series 6.11 Singularities 6.12 Analytic Continuation 6.13 Calculus of Residues 6.14 Ghost Contours 6.15 Logarithms and Cuts 6.16 Powers and Roots 6.17 Conformal Mapping 6.18 Cauchy’s Principal Value 6.19 Dispersion Relations 6.20 Kramers–Kronig Relations 6.21 Phase and Group Velocities 6.22 Method of Steepest Descent 6.23 Applications to String Theory Further Reading Exercises 7 Differential Equations 7.1 Ordinary Linear Differential Equations 7.2 Linear Partial Differential Equations 7.3 Separable Partial Differential Equations 7.4 First-Order Differential Equations 7.5 Separable First-Order Differential Equations 7.6 Hidden Separability 7.7 Exact First-Order Differential Equations 7.8 Meaning of Exactness 7.9 Integrating Factors 7.10 Homogeneous Functions 7.11 Virial Theorem 7.12 Legendre’s Transform 7.13 Principle of Stationary Action in Mechanics 7.14 Symmetries and Conserved Quantities in Mechanics 7.15 Homogeneous First-Order Ordinary Differential Equations 7.16 Linear First-Order Ordinary Differential Equations 7.17 Small Oscillations 7.18 Systems of Ordinary Differential Equations 7.19 Exact Higher-Order Differential Equations 7.20 Constant-Coefficient Equations 7.21 Singular Points of Second-Order Ordinary Differential Equations 7.22 Frobenius’s Series Solutions 7.23 Fuch’s Theorem 7.24 Even and Odd Differential Operators 7.25 Wronski’s Determinant 7.26 Second Solutions 7.27 Why Not Three Solutions? 7.28 Boundary Conditions 7.29 A Variational Problem 7.30 Self-Adjoint Differential Operators 7.31 Self-Adjoint Differential Systems 7.32 Making Operators Formally Self-Adjoint 7.33 Wronskians of Self-Adjoint Operators 7.34 First-Order Self-Adjoint Differential Operators 7.35 A Constrained Variational Problem 7.36 Eigenfunctions and Eigenvalues of Self-Adjoint Systems 7.37 Unboundedness of Eigenvalues 7.38 Completeness of Eigenfunctions 7.39 Inequalities of Bessel and Schwarz 7.40 Green’s Functions 7.41 Eigenfunctions and Green’s Functions 7.42 Green’s Functions in One Dimension 7.43 Principle of Stationary Action in Field Theory 7.44 Symmetries and Conserved Quantities in Field Theory 7.45 Nonlinear Differential Equations 7.46 Nonlinear Differential Equations in Cosmology 7.47 Nonlinear Differential Equations in Particle Physics Further Reading Exercises 8 Integral Equations 8.1 Differential Equations as Integral Equations 8.2 Fredholm Integral Equations 8.3 Volterra Integral Equations 8.4 Implications of Linearity 8.5 Numerical Solutions Exercises 9 Legendre Polynomials and Spherical Harmonics 9.1 Legendre’s Polynomials 9.2 The Rodrigues Formula 9.3 Generating Function for Legendre Polynomials 9.4 Legendre’s Differential Equation 9.5 Recurrence Relations 9.6 Special Values of Legendre Polynomials 9.7 Schlaefli’s Integral 9.8 Orthogonal Polynomials 9.9 Azimuthally Symmetric Laplacians 9.10 Laplace’s Equation in Two Dimensions 9.11 Helmholtz’s Equation in Spherical Coordinates 9.12 Associated Legendre Polynomials 9.13 Spherical Harmonics 9.14 Cosmic Microwave Background Radiation Further Reading Exercises 10 Bessel Functions 10.1 Cylindrical Bessel Functions of the First Kind 10.2 Spherical Bessel Functions of the First Kind 10.3 Bessel Functions of the Second Kind 10.4 Spherical Bessel Functions of the Second Kind Further Reading Exercises 11 Group Theory 11.1 What Is a Group? 11.2 Representations of Groups 11.3 Representations Acting in Hilbert Space 11.4 Subgroups 11.5 Cosets 11.6 Morphisms 11.7 Schur’s Lemma 11.8 Characters 11.9 Direct Products 11.10 Finite Groups 11.11 Regular Representations 11.12 Properties of Finite Groups 11.13 Permutations 11.14 Compact and Noncompact Lie Groups 11.15 Generators 11.16 Lie Algebra 11.17 Yang and Mills Invent Local Nonabelian Symmetry 11.18 Rotation Group 11.19 Rotations and Reflections in 2n Dimensions 11.20 Defining Representation of SU(2) 11.21 The Lie Algebra and Representations of SU(2) 11.22 How a Field Transforms Under a Rotation 11.23 Addition of Two Spin-One-Half Systems 11.24 Jacobi Identity 11.25 Adjoint Representations 11.26 Casimir Operators 11.27 Tensor Operators for the Rotation Group 11.28 Simple and Semisimple Lie Algebras 11.29 SU(3) 11.30 SU(3) and Quarks 11.31 Fierz Identity for SU(n) 11.32 Cartan Subalgebra 11.33 Symplectic Group Sp(2n) 11.34 Quaternions 11.35 Quaternions and Symplectic Groups 11.36 Compact Simple Lie Groups 11.37 Group Integration 11.38 Lorentz Group 11.39 Left-Handed Representation of the Lorentz Group 11.40 Right-Handed Representation of the Lorentz Group 11.41 Dirac’s Representation of the Lorentz Group 11.42 Poincaré Group 11.43 Homotopy Groups Further Reading Exercises 12 Special Relativity 12.1 Inertial Frames and Lorentz Transformations 12.2 Special Relativity 12.3 Kinematics 12.4 Electrodynamics 12.5 Principle of Stationary Action in Special Relativity 12.6 Differential Forms Exercises 13 General Relativity 13.1 Points and Their Coordinates 13.2 Scalars 13.3 Contravariant Vectors 13.4 Covariant Vectors 13.5 Tensors 13.6 Summation Convention and Contractions 13.7 Symmetric and Antisymmetric Tensors 13.8 Quotient Theorem 13.9 Tensor Equations 13.10 Comma Notation for Derivatives 13.11 Basis Vectors and Tangent Vectors 13.12 Metric Tensor 13.13 Inverse of Metric Tensor 13.14 Dual Vectors, Cotangent Vectors 13.15 Covariant Derivatives of Contravariant Vectors 13.16 Covariant Derivatives of Covariant Vectors 13.17 Covariant Derivatives of Tensors 13.18 The Covariant Derivative of the Metric Tensor Vanishes 13.19 Covariant Curls 13.20 Covariant Derivatives and Antisymmetry 13.21 What is the Affine Connection? 13.22 Parallel Transport 13.23 Curvature 13.24 Maximally Symmetric Spaces 13.25 Principle of Equivalence 13.26 Tetrads 13.27 Scalar Densities and g = | det(gik)| 13.28 Levi-Civita’s Symbol and Tensor 13.29 Divergence of a Contravariant Vector 13.30 Covariant Laplacian 13.31 Principle of Stationary Action in General Relativity 13.32 Equivalence Principle and Geodesic Equation 13.33 Weak Static Gravitational Fields 13.34 Gravitational Time Dilation 13.35 Einstein’s Equations 13.36 Energy–Momentum Tensor 13.37 Perfect Fluids 13.38 Gravitational Waves 13.39 Schwarzschild’s Solution 13.40 Black Holes 13.41 Rotating Black Holes 13.42 Spatially Symmetric Spacetimes 13.43 Friedmann–Lemaître–Robinson–Walker Cosmologies 13.44 Density and Pressure 13.45 How the Scale Factor Evolves with Time 13.46 The First Hundred Thousand Years 13.47 The Next Ten Billion Years 13.48 Era of Dark Energy 13.49 Before the Big Bang 13.50 Yang–Mills Theory 13.51 Cartan’s Spin Connection and Structure Equations 13.52 Spin-One-Half Fields in General Relativity 13.53 Gauge Theory and Vectors Further Reading Exercises 14 Forms 14.1 Exterior Forms 14.2 Differential Forms 14.3 Exterior Differentiation 14.4 Integration of Forms 14.5 Are Closed Forms Exact? 14.6 Complex Differential Forms 14.7 Hodge’s Star 14.8 Theorem of Frobenius Further Reading Exercises 15 Probability and Statistics 15.1 Probability and Thomas Bayes 15.2 Mean and Variance 15.3 Binomial Distribution 15.4 Coping with Big Factorials 15.5 Poisson’s Distribution 15.6 Gauss’s Distribution 15.7 The Error Function erf 15.8 Error Analysis 15.9 Maxwell–Boltzmann Distribution 15.10 Fermi–Dirac and Bose–Einstein Distributions 15.11 Diffusion 15.12 Langevin’s Theory of Brownian Motion 15.13 Einstein–Nernst Relation 15.14 Fluctuation and Dissipation 15.15 Fokker–Planck Equation 15.16 Characteristic and Moment-Generating Functions 15.17 Fat Tails 15.18 Central Limit Theorem and Jarl Lindeberg 15.19 Random-Number Generators 15.20 Illustration of the Central Limit Theorem 15.21 Measurements, Estimators, and Friedrich Bessel 15.22 Information and Ronald Fisher 15.23 Maximum Likelihood 15.24 Karl Pearson’s Chi-Squared Statistic 15.25 Kolmogorov’s Test Further Reading Exercises 16 Monte Carlo Methods 16.1 The Monte Carlo Method 16.2 Numerical Integration 16.3 Quasirandom Numbers 16.4 Applications to Experiments 16.5 Statistical Mechanics 16.6 Simulated Annealing 16.7 Solving Arbitrary Problems 16.8 Evolution Further Reading Exercises 17 Artificial Intelligence 17.1 Steps Toward Artificial Intelligence 17.2 Slagle’s Symbolic Automatic Integrator 17.3 Neural Networks 17.4 A Linear Unbiased Neural Network Further Reading 18 Order, Chaos, and Fractals 18.1 Hamilton Systems 18.2 Autonomous Systems of Ordinary Differential Equations 18.3 Attractors 18.4 Chaos 18.5 Maps 18.6 Fractals Further Reading Exercises 19 Functional Derivatives 19.1 Functionals 19.2 Functional Derivatives 19.3 Higher-Order Functional Derivatives 19.4 Functional Taylor Series 19.5 Functional Differential Equations Exercises 20 Path Integrals 20.1 Path Integrals and Richard Feynman 20.2 Gaussian Integrals and Trotter’s Formula 20.3 Path Integrals in Quantum Mechanics 20.4 Path Integrals for Quadratic Actions 20.5 Path Integrals in Statistical Mechanics 20.6 Boltzmann Path Integrals for Quadratic Actions 20.7 Mean Values of Time-Ordered Products 20.8 Quantum Field Theory on a Lattice 20.9 Finite-Temperature Field Theory 20.10 Perturbation Theory 20.11 Application to Quantum Electrodynamics 20.12 Fermionic Path Integrals 20.13 Application to Nonabelian Gauge Theories 20.14 Faddeev–Popov Trick 20.15 Ghosts 20.16 Effective Field Theories 20.17 Complex Path Integrals Further Reading Exercises 21 Renormalization Group 21.1 Renormalization and Interpolation 21.2 Renormalization Group in Quantum Field Theory 21.3 Renormalization Group in Lattice Field Theory 21.4 Renormalization Group in Condensed-Matter Physics Further Reading Exercises 22 Strings 22.1 The Nambu–Goto String Action 22.2 Static Gauge and Regge Trajectories 22.3 Light-Cone Coordinates 22.4 Light-Cone Gauge 22.5 Quantized Open Strings 22.6 Superstrings 22.7 Covariant and Polyakov Actions 22.8 D-branes or P-branes 22.9 String–String Scattering 22.10 Riemann Surfaces and Moduli Further Reading Exercises References Index