ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physical Layer Security for Wireless Sensing and Communication

دانلود کتاب امنیت لایه فیزیکی برای سنجش و ارتباطات بی سیم

Physical Layer Security for Wireless Sensing and Communication

مشخصات کتاب

Physical Layer Security for Wireless Sensing and Communication

ویرایش:  
نویسندگان:   
سری: IET Security Series, 18 
ISBN (شابک) : 183953527X, 9781839535277 
ناشر: The Institution of Engineering and Technology 
سال نشر: 2023 
تعداد صفحات: 385
[386] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 48,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Physical Layer Security for Wireless Sensing and Communication به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب امنیت لایه فیزیکی برای سنجش و ارتباطات بی سیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب امنیت لایه فیزیکی برای سنجش و ارتباطات بی سیم

این کتاب امنیت لایه فیزیکی (PHY) برای سنجش بی سیم و مفاهیم محیط رادیویی را به همراه مفاهیم امنیتی مرتبط از نظر استراق سمع، اختلال، دستکاری و به طور کلی، بهره برداری از سنجش بی سیم توسط کاربران غیرمجاز پوشش می دهد.


توضیحاتی درمورد کتاب به خارجی

This book covers physical layer security (PHY) for wireless sensing and radio environment concepts along with the related security implications in terms of eavesdropping, disruption, manipulation and, in general, the exploitation of wireless sensing by unauthorised users.



فهرست مطالب

Cover
Contents
Foreword
About the editors
List of acronyms
1 Wireless communication networks and the need for security
	1.1 Introduction to next-generation wireless networks
	1.2 The need for security in wireless communication
	1.3 Cryptography vs. physical layer security
		1.3.1 Cryptography
		1.3.2 Physical layer security
	References
2 Information theoretic perspective of physical layer security
	2.1 History of information theory
	2.2 Fundamentals of security and security notions
	2.3 Physical layer security performance metrics
		2.3.1 SINR-based physical layer security techniques and performance metrics
		2.3.2 Complexity-based physical layer security techniques and performance metrics
	2.4 Conclusion
	References
3 Physical layer security definition and domains
	3.1 Physical layer security definition
	3.2 Generalized physical layer security framework
		3.2.1 Observation plane
		3.2.2 Modification plane
		3.2.3 From observation plane to modification plane
	3.3 Physical layer security domains
		3.3.1 Wireless channel
		3.3.2 RF front-end
		3.3.3 Radio environment/sensing
		3.3.4 Data bits
		3.3.5 Wireless signal
		3.3.6 Network
	3.4 Conclusion
	References
4 Wireless channel from physical layer security perspective
	4.1 Introduction
	4.2 Preliminaries on channel-based PLS approaches
		4.2.1 Channel-based key generation
		4.2.2 Channel-based adaptation PLS techniques
	4.3 Eligibility requirements of channel parameters for PLS
		4.3.1 Randomness
		4.3.2 Uniqueness
		4.3.3 Reciprocity
		4.3.4 Accessibility/observability
		4.3.5 Irreproducibility
	4.4 Channel parameters beyond 5G: PLS perspective
		4.4.1 Large-scale fading
		4.4.2 Molecular absorption and scattering
		4.4.3 Small-scale fading
		4.4.4 Sparsity
		4.4.5 Array non-stationarity
		4.4.6 Temporal, Doppler and spatial non-stationarity
	4.5 Integrity of channel features
		4.5.1 Indirect attacks on the integrity
		4.5.2 Direct attacks
	4.6 Future direction and recommendation
		4.6.1 Securing integrity of the channel features
		4.6.2 High mobility and non-stationarity issues
		4.6.3 Beam squint issue in (mMIMO)
		4.6.4 Intelligent security frameworks
	4.7 Conclusion
	References
5 Physical layer authentication in wireless communication systems
	5.1 Introduction
	5.2 Physical-layer authentication
	5.3 PLA metrics
	5.4 RF/hardware-based PLA
		5.4.1 Local oscillator
		5.4.2 Power amplifier
		5.4.3 Device clock
		5.4.4 RF modulator/demodulator
		5.4.5 Multiple hardware attributes
	5.5 PLA in 5G networks and beyond
		5.5.1 Beam pattern
		5.5.2 Channel sparsity
	5.6 Receiver process
		5.6.1 Detection process
		5.6.2 Attribute extraction
		5.6.3 Classification
	5.7 Challenges and future discussion
		5.7.1 Optimal attribute selection
		5.7.2 PLA in multiuser communication networks
		5.7.3 Mobility or orientation change
	5.8 Conclusion
	Acknowledgment
	References
6 Context-aware physical layer security for future
wireless networks
	6.1 Introduction
	6.2 The radio environment map and radio environment monitoring
		6.2.1 Radio environment monitoring framework
	6.3 Context-aware PLS framework
		6.3.1 Situational awareness
		6.3.2 Risk identification
		6.3.3 PLS method selection
	6.4 Context-aware security in the literature
		6.4.1 Social reputation and trustworthiness
		6.4.2 Location, behavior, and mobility-aided authentication
	6.5 Research directions
		6.5.1 Data/information collection and management
		6.5.2 Validating the context or situational awareness
		6.5.3 Unified understanding of risk identifiers and QoSec levels
	6.6 Conclusion
	References
7 Signal domain physical modification for PLS
	7.1 Waveform & security
	7.2 Low modification: waveform’s inherent security
		7.2.1 Signal detection
		7.2.2 Signal identification/feature extraction
	7.3 Moderate modification: control-signal/channel-based PLS
	7.4 High modification: modification-based PLS
		7.4.1 Adaptation-based PLS
		7.4.2 Interference-based PLS
		7.4.3 Key-based modification at signal level
	7.5 Conclusion
	References
8 Physical modification plane: cross MAC/PHY scheduling and
resource allocation
	8.1 Introduction
	8.2 Scheduling and resource allocation
	8.3 Popular scheduling and resource allocation algorithms
	8.4 Performance metrics and basic optimization problems in resource allocation and scheduling for physical layer security
		8.4.1 Secrecy rate/capacity
		8.4.2 Secrecy outage probability/capacity
		8.4.3 Power/energy consumption
		8.4.4 Secure energy efficiency
	8.5 Resource allocation for physical layer security
		8.5.1 Literature on secure resource allocation
		8.5.2 Optimization problems in secure resource allocation
	8.6 Scheduling for physical layer security
		8.6.1 Physical layer security-based scheduling in downlink networks
	8.7 Challenges, recommendation and future directions for physical layer security in scheduling
	8.8 Conclusion
	Acknowledgment
	References
9 Physical layer security in distributed wireless networks
	9.1 Cooperative communication for physical layer security
		9.1.1 General system model in cooperative communications
		9.1.2 Cooperative solutions against eavesdropping
		9.1.3 Cooperative solutions against jamming
		9.1.4 Cooperative solutions against spoofing
		9.1.5 Challenges for physical layer security in cooperative communication
	9.2 CoMP-aided physical layer security
		9.2.1 CoMP-assisted solutions against eavesdropping
		9.2.2 CoMP-assisted solutions against jamming
		9.2.3 CoMP-assisted solutions against spoofing
		9.2.4 Technical limitations of CoMP deployment
	9.3 RISs for secure and smart environments
		9.3.1 RIS-assisted PLS solutions against eavesdropping
		9.3.2 RIS-assisted solutions against jamming
		9.3.3 RIS-assisted attacks against PLS
		9.3.4 Challenges, recommendations, and future research directions
	9.4 Conclusion
	References
10 Physical layer security for Internet of Things networks
	10.1 Introduction
	10.2 IoT architecture
		10.2.1 Perception layer
		10.2.2 Network layer
		10.2.3 Application layer
	10.3 Different attack types in IoT
		10.3.1 Denial of service attacks
		10.3.2 Denial of sleep attacks
		10.3.3 Routing attacks
		10.3.4 Sybil attacks
		10.3.5 Man in the middle attacks
	10.4 Unique features and challenges of IoT from PLS perspective
		10.4.1 Mobility
		10.4.2 Low computational capability
		10.4.3 Uplink/downlink incompatibility in terms of hardware
		10.4.4 Channel state information accuracy
		10.4.5 Scalability
	10.5 Popular PLS techniques for IoT against eavesdropping, spoofing, and jamming
		10.5.1 Beamforming
		10.5.2 Compressive sensing
		10.5.3 RF fingerprinting
		10.5.4 Cooperative jamming
		10.5.5 Spread spectrum
		10.5.6 Bit flipping
		10.5.7 Noise aggregation
		10.5.8 Fountain coding
		10.5.9 Constellation rotation
		10.5.10 Machine learning
		10.5.11 Reconfigurable intelligent surfaces
	10.6 Recommendation and future directions
		10.6.1 Multi-antenna systems in IoT devices
		10.6.2 Energy harvesting
	10.7 Conclusion
	Acknowledgment
	References
11 Physical layer security for wireless sensing and joint radar and
communications
	11.1 Physical layer security for wireless sensing
		11.1.1 Introduction to wireless sensing
		11.1.2 Exploratory attacks on wireless sensing
		11.1.3 Manipulation attacks on wireless sensing
		11.1.4 Disruption attacks on wireless sensing
	11.2 Physical layer security for joint radar and communication systems
		11.2.1 Physical layer security for dual-functional radar communication systems
		11.2.2 Physical layer security for radar–communication coexistence
	11.3 Conclusion
	Acknowledgment
	References
12 Physical layer security in non-terrestrial networks
	12.1 Introduction
	12.2 Eavesdropping in RF communication
		12.2.1 System model
		12.2.2 Secrecy performance analysis
	12.3 Eavesdropping in FSO communication
		12.3.1 Eavesdropping in space/air
		12.3.2 Satellite eavesdropping
	12.4 Conclusion
	References
13 Security in physical layer of cognitive radio networks
	13.1 Introduction
		13.1.1 Motivation of physical-layer security
		13.1.2 Wiretap channel
		13.1.3 Physical layer security metrics
	13.2 Cognitive radio networks
		13.2.1 Securing cognitive radio networks
		13.2.2 Differences in securing CRNs and other conventional networks
	13.3 Attacks on the physical layer of cognitive radio networks and countermeasures
		13.3.1 Primary user emulation attack
		13.3.2 Jamming attack
		13.3.3 Eavesdropping
	13.4 Energy harvesting for securing cognitive radio networks
		13.4.1 Energy harvesting transmit schemes
		13.4.2 Energy harvesting receivers
		13.4.3 Recent works
	13.5 Securing the physical layer of unmanned aerial vehicles-based CRNs
		13.5.1 Challenges of UAVs-based CRNs
		13.5.2 Attacks on the physical layer of UAVs-based CRNs and countermeasures
	13.6 Cascaded fading channels and securing cognitive radio networks
		13.6.1 Applications of cascaded fading channels
		13.6.2 Cascaded fading channels and PLS in CRNs
		13.6.3 Recent works
	13.7 Conclusions
	13.8 Future directions
		13.8.1 Cross-layer attacks
		13.8.2 Machine learning algorithms
		13.8.3 Reflecting intelligent surfaces
		13.8.4 Millimeter wave applications
	References
14 Machine learning for physical layer security
	14.1 Introduction
	14.2 ML algorithms
		14.2.1 Supervised learning
		14.2.2 Unsupervised learning
		14.2.3 Semi-supervised learning
		14.2.4 Reinforcement learning
	14.3 Deep learning algorithms
	14.4 Multi-task learning
	14.5 Federated learning
	14.6 Generative adversarial network
		14.6.1 Generative adversarial networks in security defenses
		14.6.2 Generative adversarial networks in security attacks
	14.7 Interpretable ML
	14.8 Privacy protection in ML
		14.8.1 Privacy threats
		14.8.2 Privacy protection
	14.9 Prediction of security attacks
	14.10 Selected use cases of ML for physical layer security
		14.10.1 Signal relation-based physical layer authentication
		14.10.2 Multiple radio frequency impairments
		14.10.3 Cognitive radio security
		14.10.4 Internet of Things security
	14.11 Performance metrics
	14.12 Computation
	14.13 Open challenges and future directions
	14.14 Conclusion
	Acknowledgement
	References
15 Communications network security using quantum physics
	15.1 Introduction
	15.2 QKD system description and components
		15.2.1 QKD photon sources and detectors
	15.3 QKDN protocols standardization
	15.4 QKDN quantum layer protocols
		15.4.1 Performance parameters of QKD
		15.4.2 Overview of the information flow
		15.4.3 Types of QKD protocols
		15.4.4 Security of QKD protocols
		15.4.5 QKD protocols
	15.5 Quantum random number generators
		15.5.1 Types of QRNGs
		15.5.2 Steps in quantum random bit generation
		15.5.3 QRNG based on vacuum fluctuations
	15.6 Conclusion and future direction
	References
Index
Back Cover




نظرات کاربران