دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hüseyin Arslan. Haji M. Furqan
سری: IET Security Series, 18
ISBN (شابک) : 183953527X, 9781839535277
ناشر: The Institution of Engineering and Technology
سال نشر: 2023
تعداد صفحات: 385
[386]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Physical Layer Security for Wireless Sensing and Communication به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت لایه فیزیکی برای سنجش و ارتباطات بی سیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب امنیت لایه فیزیکی (PHY) برای سنجش بی سیم و مفاهیم محیط رادیویی را به همراه مفاهیم امنیتی مرتبط از نظر استراق سمع، اختلال، دستکاری و به طور کلی، بهره برداری از سنجش بی سیم توسط کاربران غیرمجاز پوشش می دهد.
This book covers physical layer security (PHY) for wireless sensing and radio environment concepts along with the related security implications in terms of eavesdropping, disruption, manipulation and, in general, the exploitation of wireless sensing by unauthorised users.
Cover Contents Foreword About the editors List of acronyms 1 Wireless communication networks and the need for security 1.1 Introduction to next-generation wireless networks 1.2 The need for security in wireless communication 1.3 Cryptography vs. physical layer security 1.3.1 Cryptography 1.3.2 Physical layer security References 2 Information theoretic perspective of physical layer security 2.1 History of information theory 2.2 Fundamentals of security and security notions 2.3 Physical layer security performance metrics 2.3.1 SINR-based physical layer security techniques and performance metrics 2.3.2 Complexity-based physical layer security techniques and performance metrics 2.4 Conclusion References 3 Physical layer security definition and domains 3.1 Physical layer security definition 3.2 Generalized physical layer security framework 3.2.1 Observation plane 3.2.2 Modification plane 3.2.3 From observation plane to modification plane 3.3 Physical layer security domains 3.3.1 Wireless channel 3.3.2 RF front-end 3.3.3 Radio environment/sensing 3.3.4 Data bits 3.3.5 Wireless signal 3.3.6 Network 3.4 Conclusion References 4 Wireless channel from physical layer security perspective 4.1 Introduction 4.2 Preliminaries on channel-based PLS approaches 4.2.1 Channel-based key generation 4.2.2 Channel-based adaptation PLS techniques 4.3 Eligibility requirements of channel parameters for PLS 4.3.1 Randomness 4.3.2 Uniqueness 4.3.3 Reciprocity 4.3.4 Accessibility/observability 4.3.5 Irreproducibility 4.4 Channel parameters beyond 5G: PLS perspective 4.4.1 Large-scale fading 4.4.2 Molecular absorption and scattering 4.4.3 Small-scale fading 4.4.4 Sparsity 4.4.5 Array non-stationarity 4.4.6 Temporal, Doppler and spatial non-stationarity 4.5 Integrity of channel features 4.5.1 Indirect attacks on the integrity 4.5.2 Direct attacks 4.6 Future direction and recommendation 4.6.1 Securing integrity of the channel features 4.6.2 High mobility and non-stationarity issues 4.6.3 Beam squint issue in (mMIMO) 4.6.4 Intelligent security frameworks 4.7 Conclusion References 5 Physical layer authentication in wireless communication systems 5.1 Introduction 5.2 Physical-layer authentication 5.3 PLA metrics 5.4 RF/hardware-based PLA 5.4.1 Local oscillator 5.4.2 Power amplifier 5.4.3 Device clock 5.4.4 RF modulator/demodulator 5.4.5 Multiple hardware attributes 5.5 PLA in 5G networks and beyond 5.5.1 Beam pattern 5.5.2 Channel sparsity 5.6 Receiver process 5.6.1 Detection process 5.6.2 Attribute extraction 5.6.3 Classification 5.7 Challenges and future discussion 5.7.1 Optimal attribute selection 5.7.2 PLA in multiuser communication networks 5.7.3 Mobility or orientation change 5.8 Conclusion Acknowledgment References 6 Context-aware physical layer security for future wireless networks 6.1 Introduction 6.2 The radio environment map and radio environment monitoring 6.2.1 Radio environment monitoring framework 6.3 Context-aware PLS framework 6.3.1 Situational awareness 6.3.2 Risk identification 6.3.3 PLS method selection 6.4 Context-aware security in the literature 6.4.1 Social reputation and trustworthiness 6.4.2 Location, behavior, and mobility-aided authentication 6.5 Research directions 6.5.1 Data/information collection and management 6.5.2 Validating the context or situational awareness 6.5.3 Unified understanding of risk identifiers and QoSec levels 6.6 Conclusion References 7 Signal domain physical modification for PLS 7.1 Waveform & security 7.2 Low modification: waveform’s inherent security 7.2.1 Signal detection 7.2.2 Signal identification/feature extraction 7.3 Moderate modification: control-signal/channel-based PLS 7.4 High modification: modification-based PLS 7.4.1 Adaptation-based PLS 7.4.2 Interference-based PLS 7.4.3 Key-based modification at signal level 7.5 Conclusion References 8 Physical modification plane: cross MAC/PHY scheduling and resource allocation 8.1 Introduction 8.2 Scheduling and resource allocation 8.3 Popular scheduling and resource allocation algorithms 8.4 Performance metrics and basic optimization problems in resource allocation and scheduling for physical layer security 8.4.1 Secrecy rate/capacity 8.4.2 Secrecy outage probability/capacity 8.4.3 Power/energy consumption 8.4.4 Secure energy efficiency 8.5 Resource allocation for physical layer security 8.5.1 Literature on secure resource allocation 8.5.2 Optimization problems in secure resource allocation 8.6 Scheduling for physical layer security 8.6.1 Physical layer security-based scheduling in downlink networks 8.7 Challenges, recommendation and future directions for physical layer security in scheduling 8.8 Conclusion Acknowledgment References 9 Physical layer security in distributed wireless networks 9.1 Cooperative communication for physical layer security 9.1.1 General system model in cooperative communications 9.1.2 Cooperative solutions against eavesdropping 9.1.3 Cooperative solutions against jamming 9.1.4 Cooperative solutions against spoofing 9.1.5 Challenges for physical layer security in cooperative communication 9.2 CoMP-aided physical layer security 9.2.1 CoMP-assisted solutions against eavesdropping 9.2.2 CoMP-assisted solutions against jamming 9.2.3 CoMP-assisted solutions against spoofing 9.2.4 Technical limitations of CoMP deployment 9.3 RISs for secure and smart environments 9.3.1 RIS-assisted PLS solutions against eavesdropping 9.3.2 RIS-assisted solutions against jamming 9.3.3 RIS-assisted attacks against PLS 9.3.4 Challenges, recommendations, and future research directions 9.4 Conclusion References 10 Physical layer security for Internet of Things networks 10.1 Introduction 10.2 IoT architecture 10.2.1 Perception layer 10.2.2 Network layer 10.2.3 Application layer 10.3 Different attack types in IoT 10.3.1 Denial of service attacks 10.3.2 Denial of sleep attacks 10.3.3 Routing attacks 10.3.4 Sybil attacks 10.3.5 Man in the middle attacks 10.4 Unique features and challenges of IoT from PLS perspective 10.4.1 Mobility 10.4.2 Low computational capability 10.4.3 Uplink/downlink incompatibility in terms of hardware 10.4.4 Channel state information accuracy 10.4.5 Scalability 10.5 Popular PLS techniques for IoT against eavesdropping, spoofing, and jamming 10.5.1 Beamforming 10.5.2 Compressive sensing 10.5.3 RF fingerprinting 10.5.4 Cooperative jamming 10.5.5 Spread spectrum 10.5.6 Bit flipping 10.5.7 Noise aggregation 10.5.8 Fountain coding 10.5.9 Constellation rotation 10.5.10 Machine learning 10.5.11 Reconfigurable intelligent surfaces 10.6 Recommendation and future directions 10.6.1 Multi-antenna systems in IoT devices 10.6.2 Energy harvesting 10.7 Conclusion Acknowledgment References 11 Physical layer security for wireless sensing and joint radar and communications 11.1 Physical layer security for wireless sensing 11.1.1 Introduction to wireless sensing 11.1.2 Exploratory attacks on wireless sensing 11.1.3 Manipulation attacks on wireless sensing 11.1.4 Disruption attacks on wireless sensing 11.2 Physical layer security for joint radar and communication systems 11.2.1 Physical layer security for dual-functional radar communication systems 11.2.2 Physical layer security for radar–communication coexistence 11.3 Conclusion Acknowledgment References 12 Physical layer security in non-terrestrial networks 12.1 Introduction 12.2 Eavesdropping in RF communication 12.2.1 System model 12.2.2 Secrecy performance analysis 12.3 Eavesdropping in FSO communication 12.3.1 Eavesdropping in space/air 12.3.2 Satellite eavesdropping 12.4 Conclusion References 13 Security in physical layer of cognitive radio networks 13.1 Introduction 13.1.1 Motivation of physical-layer security 13.1.2 Wiretap channel 13.1.3 Physical layer security metrics 13.2 Cognitive radio networks 13.2.1 Securing cognitive radio networks 13.2.2 Differences in securing CRNs and other conventional networks 13.3 Attacks on the physical layer of cognitive radio networks and countermeasures 13.3.1 Primary user emulation attack 13.3.2 Jamming attack 13.3.3 Eavesdropping 13.4 Energy harvesting for securing cognitive radio networks 13.4.1 Energy harvesting transmit schemes 13.4.2 Energy harvesting receivers 13.4.3 Recent works 13.5 Securing the physical layer of unmanned aerial vehicles-based CRNs 13.5.1 Challenges of UAVs-based CRNs 13.5.2 Attacks on the physical layer of UAVs-based CRNs and countermeasures 13.6 Cascaded fading channels and securing cognitive radio networks 13.6.1 Applications of cascaded fading channels 13.6.2 Cascaded fading channels and PLS in CRNs 13.6.3 Recent works 13.7 Conclusions 13.8 Future directions 13.8.1 Cross-layer attacks 13.8.2 Machine learning algorithms 13.8.3 Reflecting intelligent surfaces 13.8.4 Millimeter wave applications References 14 Machine learning for physical layer security 14.1 Introduction 14.2 ML algorithms 14.2.1 Supervised learning 14.2.2 Unsupervised learning 14.2.3 Semi-supervised learning 14.2.4 Reinforcement learning 14.3 Deep learning algorithms 14.4 Multi-task learning 14.5 Federated learning 14.6 Generative adversarial network 14.6.1 Generative adversarial networks in security defenses 14.6.2 Generative adversarial networks in security attacks 14.7 Interpretable ML 14.8 Privacy protection in ML 14.8.1 Privacy threats 14.8.2 Privacy protection 14.9 Prediction of security attacks 14.10 Selected use cases of ML for physical layer security 14.10.1 Signal relation-based physical layer authentication 14.10.2 Multiple radio frequency impairments 14.10.3 Cognitive radio security 14.10.4 Internet of Things security 14.11 Performance metrics 14.12 Computation 14.13 Open challenges and future directions 14.14 Conclusion Acknowledgement References 15 Communications network security using quantum physics 15.1 Introduction 15.2 QKD system description and components 15.2.1 QKD photon sources and detectors 15.3 QKDN protocols standardization 15.4 QKDN quantum layer protocols 15.4.1 Performance parameters of QKD 15.4.2 Overview of the information flow 15.4.3 Types of QKD protocols 15.4.4 Security of QKD protocols 15.4.5 QKD protocols 15.5 Quantum random number generators 15.5.1 Types of QRNGs 15.5.2 Steps in quantum random bit generation 15.5.3 QRNG based on vacuum fluctuations 15.6 Conclusion and future direction References Index Back Cover