ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physical Chemistry for the JEE and Other Engineering Entrance Examinations

دانلود کتاب شیمی فیزیک برای JEE و سایر آزمون های ورودی مهندسی

Physical Chemistry for the JEE and Other Engineering Entrance Examinations

مشخصات کتاب

Physical Chemistry for the JEE and Other Engineering Entrance Examinations

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9788131787618, 9789332516366 
ناشر: Pearson Education 
سال نشر: 2013 
تعداد صفحات: 1225 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 118 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Physical Chemistry for the JEE and Other Engineering Entrance Examinations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی فیزیک برای JEE و سایر آزمون های ورودی مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
Chapter 1: Structure of Atom
	1.1 Introduction
	1.2 Atomic Theory
	1.3 Sub-Atomic Particles
		1.3.1 Discovery of Electron
		1.3.2 Charge on the Electron
		1.3.3 Discovery of Proton
		1.3.4 Discovery of Neutron
	1.4 Atomic Models
		1.4.1 Thomson Model of Atom
		1.4.2 Rutherford’s Nuclear Model of Atom
	1.5 Atomic Number
		1.5.1 Isobars, Isotopes and Isotones
	1.6 Developments Leading to the Bohr Model of Atom
		1.6.1 Nature of Light and Electromagnetic Radiation
		1.6.2 Quantum Theory of Radiation
		1.6.3 Photoelectric Effect
		1.6.4 Compton Effect
		1.6.5 Dual Nature of Electromagnetic Radiations
		1.6.6 Atomic Spectra
		1.6.7 Types of Spectra
	1.7 Bohr’s Model of the Atom
		1.7.1 Bohr’s Theory of the Hydrogen Atom
		1.7.2 Origin of Spectral Lines and the Hydrogen Spectrum
		1.7.3 Limitations of the Bohr’s Model
	1. 8 Waves and Particles
		1.8.1 Dual Nature of Matter
		1.8.2 Heisenberg’s Uncertainty Principle
		1.8.3 Significance of Uncertainty Principle
		1.8.4 Quantum Mechanical Model of Atom
		1.8.5 Schrodinger Wave Equation
		1.8.6 The Meaning of Wave Function
	1.9 Quantum Numbers
	1.10 Shapes of Orbitals
		1.10.1 Boundary Surface Diagrams
		1.10.2 Energies of Orbitals
	1.11 Filling of Orbitals
		1.11.1 Electronic Configuration of Atoms
		1.11.2 Relative Stabilities of Electronic Configurations
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 2: Basic Concepts of Chemistry
	2.1 Introduction
	2.2 Submicroscopic Models
	2.3 Mixture and Pure Substances
	2.4 Physical Properties of Matter
		2.4.1 The States of Matter
		2.4.2 Chemical Change
		2.4.3 The Elements
		2.4.4 Compounds and Mixtures
		2.4.5 Difference between Physical and Chemical Change
	2.5. Properties of Matter and their Measurement
		2.5.1 Physical Measurements
		2.5.2. The International System of Units (SI Units)
		2.5.3 S1 Base Units and S1 Prefixes
		2.5.4 Derived Units
		2.5.5 Dimensional Analysis
		2.6 Significant Figures
			2.6.1 Number of Significant Figures
			2.6.2 Significant Figures in Calculations
			2.6. 3 Exact Numbers
		2.7 Laws of Chemical Combinations
			2.7.1 Law of Conservation of Mass
			2.7.2 Law of Definite Proportions
			2.7.3 Law of Equivalents or Law of Reciprocal Proportions
			2.7.4 Dalton’s Atomic Theory
			2.7.5 Law of Multiple Proportions
			2.7.6 Gay-Lussac's is Law of Volumes
			2.7.7 Avogadro’s Hypothesis
		2.8 Atomic Weights
			2.8.1 The Atomic Weight Scale
	2.9 Percentage Composition and Formula
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 3: The States of Matter
	3.1 Introduction
	3.2 Inter-Molecular Forces
		3.2.1 Dipole-Dipole Interaction
		3.2.2 Ion-Dipole Interactions
		3.2.3 Ion-Induced Dipole Interaction and Dipole-Induced Dipole Interaction
		3.2.4 Instantaneous Dipole-Induced Dipole Interaction
		3.2.5 Hydrogen Bond
		3.2.6 Intermolecular Forces vs Thermal Interactions
	3.3 The Gaseous State
		3.3.1 Mass (m)
		3.3.2 Volume (V)
		3.3.3 Pressure
		3.3.4 Temperature (T)
	3.4 The Gas Laws
		3.4.1 Boyle’s Law
		3.4.2 Charles – Gay Lussac’s Law
		3.4.3 Gay Lussac’s Law
		3.4.4 Avogadro’s Hypothesis
		3.4.5 Ideal Gas Equation
		3.4.6 Gas Density
		3.4.7 Graham’s Law of Diffusion
		3.4.8 Dalton's Law of Partial Pressures
	3.5 The Kinetic Theory of Gases
		3.5.1 Kinetic Gas Equation
		3.5.2 Derivation of Kinetic Gas Equation
		3.5.3 Deduction of Gas Laws
	3.6 Distribution of Molecular Velocities
	3.7 Collision Properties
		3.7.1 Calculation of Mean Free Path
		3.7.2 Mean Free Path
	3.8 Real Gases: Deviation From Ideal Gas Behaviour
		3.8.1 Van der Waals Equation
		3.8.2 Applicability of Van der Waals Equation to Real Gases
		3.8.3 Compressibility Factor
	3.9 The Heat Capacities of Gases
		3.9.1 Molar Heat at Constant Volume
		3.9.2 Molar Heat at Constant Pressure
		3.9.3 Joule-Thomson coefficient
	3.10 Liquefaction
		3.10.1 Law of Corresponding States
		3.10.2 Limitations of Van der Waals Equation
		3.10.3 Vapour Pressure
		3.10.4 Vapour Pressure of Salt Hydrates
		3.10.5 Surface Tension
		3.10.6 Viscosity
		3.10.7 Factors Affecting Viscocity of Liquids
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 4: Solid State
	4.1 Introduction
	4.2 Crystalline and Amorphous Solids
	4.2 Classification of Crystalline Solids
		4.2.1 Molecular Solids
		4.2.2 Ionic Solids
		4.2.3 Covalent or Network Solids
		4.2.4 Metallic Solids
	4.3 Allotropy and Polymorphism
		4.3.1 Enantiotropy
		4.3.2 Monotropy
		4.3.3 Dynamic Allotropy
	4.4 Isomorphism
	4.5 The Vapour Pressure and Melting Points of Solids
	4.6 Space Lattice and Unit Cell
		4.6.1 Primitive and Unit Cell
		4.6.2 The Seven Crystal Systems
		4.6.3 Contribution of Lattice Points to the Unit Cell
	4.7 Packing of Equal Spheres
		4.7.1 Interstitial Sites or Interstitial Voids
		4.7.2 Radios Ratio of Tetrahedral Void
		4.7.3 Radius Ratio of Octahedral Void
		4.7.4 Radius Ratio of Triangular Void
		4.7.5 Radius Ratio of Cubic Void
		4.7.6 Coordination Number
		4.7.7 Locating Tetrahedral and Octahedral Voids in Cubic Close Packing
	4.8 Efficiency of Packing
		4.8.1 Relationship Between the Nearest Neighbour Distance (d) and Radius of Atom (r) and Edge of Unit Cell (a)
	4.9 Calculations Involving Unit Cell Dimensions
	4.10 Metal Crystals
	4.11 Radius Ratio and Structure of Ionic Compounds
		4.11.1 Structure of Ionic Compoundsof AB Type
	4.12 Crystallography
		4.12.1 The Law of Constancy of Interfacial Angles
		4.12.2 Elements of Symmetry
		4.12.3 Law of Rational Indices
		4.12.4 X-rays and Internal Structure of Crystal
		4.12.5 Determination of Crystal Structure
		4.12.6 Structure of Crystals
	4.13 Imperfections in Solids
		4.13.1 Point Defects
	4.14 Properties of Solids
		4.14.1 Electrical Properties
		4.14.2 Electrical Conductivity in Metals
		4.14.3 Electrical Conductivity in Semi Conductors
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 5: Solutions
	5.1 Introduction
	5.2 Types of Solutions
	5.3 Methods For Expressing The Concentration of A Solution
	5.4 Types of Binary Solutions
	5.5 Solubility
		5.5.1 The Solubility of Solids in Liquids
		5.5.2 Cause of Solubility of Solids in Liquids
	5.6 Solubility of Gases in Liquids Henry’s Law
		5.6.1 Other Forms of Henry’s Law
		5.6.2 Characteristics of Henry’s Law Constant KH
		5.6.3 Limitations of Henry’s Law
		5.6.4 Application of Henry’s Law
	5.7 Solution of Liquids in Liquids
		5.7.1 Cause of Miscibility and Immiscibility
		5.7.2 Distillation of Binary Solutionsof Liquid in Liquid
		5.7.3 Fractional Distillation
		5.7.4 Fractional Distillation of Solutions Showing Large Positive Deviation from Raoult’s Law
		5.7.5 Fractional Distillation of Solutions Showing Larger Negative Deviations from Raoult’s law
		5.7.6 Azeotropic Mixtures or Constant Boiling Mixtures
	5.8 Colligative Properties
		5.8.1 Vapour Pressure of Solutions of Solids in Liquids
		5.8.2 Types of Colligative Properties
	5.9 Lowering of Vapour Pressure
		5.9.1 Raoult’s Law
		5.9.2 Lowering of Vapour Pressure –A Colligative Property
		5.9.3 Limitations of Raoult’s Law
		5.9 4 Derivation of Raoult’s Law
		5.9.5 Determination of Molecular Weight or Molecular Mass from Lowering of Vapour Pressure
		5.9.6 Determination of the Lowering of Vapour Pressure
	5.10 Osmosis and Osmotic Pressure
		5.10.1 Demonstration of Osmosis and Osmotic Pressure
		5.10.2 Berkeley and Hartely’s Method
		5.10.3 Van’t Hoff Theory of Dilute Solutions The Laws of Osmotic Pressure
		5.10.4 Van’t Hoff – Avogadro’s Law for Solutions
		5.10.5 Osmotic Pressure: A Colligative Property
		5.10.6 Relation Between Osmotic Pressure and Vapour Pressure Lowering
		5.10.7 Determination of Molecular Weight or Molecular Mass from Osmotic Pressure
		5.10.8 Usefulness and Limitations of Van’t Hoff’s Theory of Dilute Solutions
		5.10.9 Osmotic Pressure of Mixture of Two Solutions
		5.10.10 Reverse Osmosis
		5.10.11 Silicate Gardens
		5.10.12 Biological Importance of Osmosis
	5.11 Elevation in Boiling Point
		5.11.1 Determination of Molecular Weight or Molecular Mass from Elevation in Boiling Point
		5.11.2 Thermodynamic Derivation
		5.11.3 Boiling Point Elevation – A Colligative Property
		5.11.4 Relation Between Elevation of B.P.and Relative Lowering of Vapour Pressure
		5.11.5 Determination of Boiling Point Elevation
	5.12 Depression of Freezing Point
		5.12.1 Determination of Molecular Weight or Molecular Mass of a Solute from Depression in F.Pt
		5.12.2 Relation Between Depression in F.Pt and Lowering of Vapour Pressure
		5.12.3 Relation Between Depression in F.Pt and Osmotic Pressure
		5.12.4 Freezing Point Depression – A Coligative Property
		5.12.5 Determination of Freezing Point Depression
		5.12.6 Application of Depression of Freezing Point
	5.13 Abnormal Molecular Weights
		5.13.1 Dissociation
		5.13.2 Association
		5.13.3 Abnormal Molecular Weights
		Key Points
		Practice Exercise
		Answer Keys
		Hints and Solutions
Chapter 6: Thermodynamics
	6.1 Introduction
	6.2 Thermodynamic Systems
		6.2.1 Types of Systems
		6.2.2 Thermodynamic Variables
		6.2.3 Thermodynamic Equilibrium
		6.2.4 State of a System
		6.2.5 Homogeneous and Heterogeneous Systems
		6.2.6 State Functions
		6.2.7 Methods of Studying Thermodynamics
		6.2.8 Types of Process
		6.2.9 Path
	6.3 Heat and Work
	6.4 Zeroth Law
	6.5 Internal Energy
	6.6 The First Law of Thermodynamics
		6.6.1 Applications of First Law of Thermodynamics
		6.6.2. Work Done in Isothermal and Reversible Expansion of an Ideal Gas
		6.6.3 Work Done in an Isothermal Irreversible Expansion of an Ideal Gas
		6.6.4 Adiabatic Expansion of Ideal Gas
		6.6.5 Work Done in the Irreversible Expansion of an Ideal Gas in Adiabatic Process
		6.6.6 Comparison Between Isothermal and Adiabatic Expansion of an Ideal Gas
	6.7 Enthalpy
		6.7.1 Enthalpy and Standard States
	6.8 Second Law of Thermodynamics
		6.8.1 The Decrease in Enthalpy is not a Criterion but a Contributor for Spontaneity
		6.8.2 Entropy and Spontaneity
		6.8.3 The Concept of Entropy
		6.8.4 Changes Occurring in an Isolated System
		6.8.5 Quantitative Aspects of Entropy
		6.8.6 Entropy as a State Function
		6.8.7 Entropy Change Spontaneity and Equilibrium: Second law of Thermodynamics
		6.8.8 Entropy and Equilibrium State
		6.8.9 Entropy Change in Reversible Process
		6.8.10 Entropy Change in Irreversible Processes
		6.8.11 Entropy Change for Ideal Gases
		6.8.12 Entropy Change During Phase Transition
		6.8.13 Standard Entropies
		6.8.14 Entropy Changes of a Reaction
	6.9 Gibbs Energy
		6.9.1 Standard Gibbs Energies
		6.9.2 The Gibbs Energy of Formation of an Element in its Standard State is Zero
		6.9.3 Gibbs Energy Changes Under Non-Standard Conditions
		6.9.4 Predicting Spontaneity of a Process
		6.9.5 Qualitative Treatment of Gibbs Energy
		6.9.6 Equilibrium and Gibbs Energy
		6.9.7 Equilibrium and Equilibrium Constants
		6.9.8 Coupled Reactions
		6.9.9 Gibbs Energy Change and Non-Mechanical Work
		6.9.10 Variation of Gibbs Energy with Temperature and Pressure
		6.9.11 Clapeyron Equation
		6.9.12 Clausius–Clapeyron Equation
		6.9.13 Application of Clapeyron’s Classius Equation for Liquid ←→ Vapours Equilibrium
		Key Points
		Practice Exercise
		Answer Keys
		Hints and Solutions
Chapter 7: Thermochemistry
7.1 Introduction
7.2 Energy Stored in Atoms and Molecules
	7.2.1 Measuring Heats of Reaction
	7.2.2 Thermochemical Equations
7.3. Standard Enthalpies
	7.3.1 Standard Enthalpy of an Element
	7.3.2 Standard Heats of Formation
	7.3.3 Enthalpy Changes in Chemical Reactions
	7.3.4 Variation of Heat of Reaction with Temperature: Kirchhoff’s Equation
	7.3.5 Heat of Combustion
	7.3.6 Enthalpy of Phase Transitions
	7.3.7 Enthalpy Changes in Solution
7.4. Laws of Thermochemistry
	7.4.1 Enthalpy of Atomization
	7.4.2 Bond Enthalpy (ΔbondHO)
	7.4.3 Lattice Energies
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 8: Chemical Kinetics
	8.1 Introduction
	8.2 Rate of Reaction
		8.2.1 Reactions Involving Different Stoichiometric Coefficients of Reactants and Products
		8.2.2 Average Rate and Instantaneous Rate
		8.2.3 Units of Rate of Reaction
		8.2.4 Determination of the Rate of Reaction
	8.3 Factors which influence the Rate of Reactions
	8.4 Rate Laws
		8.4.1 Characteristics of Rate Constant
		8.4.2 Differences Between Rate of Reaction and Rate Constant
	8.5 Rate Law Expression
	8.6 Order of Reaction
		8.6.1 Pseudo Chemical Reactions
	8.7 Molecularity of a Reaction
		8.7.1 Why the Reactions of Higher Order are Rare
		8.7.2 Mechanism and Rate Law
		8.7.3 How to Assign Mechanism to a Reaction
	8.8 Integrated Rate Equations
		8.8.1 Zero Order Reaction
		8.8.2 First Order Reaction
		8.8.3 Some Typical First Order Reactions
		8.8.4 Applications of the First Order Rate Law Equation
		8.8.5 Second Order Reactions
		8.8.6 Example of Second Order Rate Equation
		8.8.7 Third Order Reactions
		8.8.9 Complications in the Determination of Order of Reaction: Complex Reactions
	8.9 Effect of Temperature on Rate of Reaction
		8.9.1 Activated Molecules and Temperature
	8.10 Theories of Reaction Rates
		8.10.1 Collision Theory of Reaction Rate
		8.10.2 Catalysts and Activation Energy
		8.10.3 Transition State Theory
		Key Points
		Practice Exercise
		Answer Keys
		Hints and Solutions
Chapter 9: Chemical Equilibrium
	9.1 Introduction
		9.1.1 Reversibility of Reactions
		9.1.2 Equilibrium in Physical Processes
	9.2.1 Solid–Liquid Equilibrium
	9.2.2 Liquid–Vapour Equilibrium
	9.2.3 Solid–Vapour Equilibrium
	9.2.4 Equilibrium Involving Dissolution of Solid or Gases in Liquids
	9.2.5 General Characteristics of Equilibrium Involving Physical Process
	9.3 Chemical Equilibria
		9.3.1 Characteristics of Chemical Equilibrium
		9.3.2 Limitations of the Equation for Chemical Equilibrium
		9.3.3 Types of Chemical Equilibria
	9.4 Law of Mass Action–Equilibrium Constant
		9.4.1 Application of Law of Mass Action
		9.4.2 Characteristics of Equilibrium Constant
		9.4.3 Factors Influencing Equilibrium Constant
		9.4.4 Units of Kc and Kp
		9.4.5 Relationship Between Kc and Kp
		9.4.6 Change in the Values of Kc and Kp with the Change in the Form of Chemical Equation
		9.4.7 Heterogeneous Chemical Equilibria
	9.5 Aplications of Equilibrium Constants
		9.5.1 Predicting the Extent of Reaction
		9.5.2 Predicting the Direction of the Reaction
	9.6 Temperature Dependenceof Equilibrium Constant
	9.7 Calculation of Equilibrium Concentrations and Equilibrium Presures
	9.8 Effect of Addition of an Inert Gas
		9.8.1 Effect of Addition of Reactants to the Reaction
		9.8.2 Dissociation of Dinitrogen Tetroxide
		9.8.3 Calculation of Degree of Dissociation from Density Measurements
	9.9 Homogeneous Chemical Equilibrium in Liquid State
	9.10 Relationship Between Equilibrium Constant K, Reaction Quotient Q and Gibbs Energy G
	9.11 Le Chatelier’s Principle
		9.11.1 Application to physical Equilibrium
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 10: Ionic Equilibrium
	10.1 Introduction
	10.2 Arrhenius Theory of Ionization
		10.2.1 Ostwald’s Dilution Law
		10.2.2 Factors Affecting the Degree of Dissociation
		10.2.3. Limitations of Arrhenius Theory
	10.3 Acids, Bases and Salts
		10.3.1 Arrhenius Theory
		10.3.2 The Bronsted-Lowry Theory
		10.3.3 Lewis Theory
		10.3.4 Influence of Solvents on Acid Strength
		10.3.5 Alkalis, Acids and Amphoteric Hydroxides
		10.3.6 Determination of Relative Strengths of Acids
		10.3.7 Factors Influencing the Strength of an Acid
		10.3.8 Acid–Base Strength and the Molecular Structure
	10.4 Dissociation of Weak Acids and Weak Bases
		10.4.1 Dissociation Constants of Polybasic Acids
		10.4.2 Dissociation of Weak Base
	10.5 Ionization Constant of Water and its Ionic Product
		10.5.1 The pH Scale
		10.5.2 Relation Between Ka and Kb
		10.5.3 Common Ion Effect in the Ionization of Acids and Bases
	10.6 Acid–Base Neutralization —Salts
		10.6.1 Hydrolysis of Salts and the pH of Their Solutions
	10.7 Buffer Solution
		10.7.1 pH Values of Buffer Mixtures
	10.8 Acid – Base Indicators
		10.8.1 Theory of Indicators
		10.8.2 Selection of Indicators in Acid-Base Titrations
	10.9 Solubility Product
		10.9.1 Common Ion Effect
		10.9.2 Applications of Solubility Product
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 11: Redox Reactions
	11.1 Introduction
	11.2 Redox Reactions Involving Electron Transfer and Bond Breaking
		11.2.1 Electron Transfer Involving Essentially Covalent Molecules
		11.2.3 Competitive Electron Transfer Reactions
	11.3 Oxidation Numbers
		11.3.1 Oxidation Numbers of Elements in Covalent Compounds
		11.3.2 Rules for Assigning Oxidation Number to an Atom
		11.3.3 Average Oxidation Numbers
		11.3.4 Oxidation State
		11.3.5 Distinction Between Oxidation Number and Valency
		11.3.6 Redox Reactions in Terms of Oxidation Number
		11.3.7 Oxidation Number and Naming of Compounds
	11.4 Types of Redox Reactions
		11.4.1 Balancing of Redox Reactions
		11.4.2 Balancing of Redox Reactions by Oxidation Number Method
		11.4.3 Balancing of Redox Reactions by Ion – Electron Method
	11.5 Redox Reactions as the Basis For Titrations
		11.5.1 Limitations of Concepts of Oxidation Number
	11.6 Redox Reactions and Electrode Processes
		11.6.1 Electrode Potential
		11.6.2 The Standard Hydrogen Electrode
		11.6.3 Standard Electrode Potentials
		11.6.4 Reference Electrodes
		11.6.5 Factors Affecting the Values of Standard Electrode Potentials
		11.6.6 Salt Bridge and its Function
		11.6.7 Electrochemical Series
		11.6.8 Application of Electrochemical Series
	11.7 Importance of the Redox Reactions in Human Activity
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 12: Electrochemistry
	12.1 Introduction
	12.2 Electrochemical Cells
		12.2.1 Representation of an Electrochemical Cell
		12.2.2 Electrochemical Changes: Electrolytic Cells and Galvanic Cells
		12.2.3 Types of Electrodes
		12.2.4 Electromotive Force of the Cell
		12.2.5 Reversible and Irreversible Cells
	12.3 Electrical Energy
		12.3.1 Standard Free Energies of Half-Cell Reactions
		12.3.2 Dependence of Redox Potential on Ionic Concentration and on Temperature
		12.3.3 Nernst Equation for Single Electrode Reaction
		12.3.4 Equilibrium Constant from Nernst Equation
		12.3.5 Electrochemical Cell and Gibbs Energy of the Reaction
		12.3.6 Relationship Between Electrical Energy and Enthalpy Change of Cell Reaction
	12.4 Concentration Cells
	12.5 Conductance
		12.5.1 Conductance of Electrolytes
		12.5.2 Factors Affecting Electrical Conductivity of Electrolytic Solutions
		12.5.3 Molar Conductivity or Molar Conductance
		12.5.4 Equivalent Conductance
		12.5.5 Measurement of the Conductance of Solutions
		12.5.6 Factors Affecting Variation of Molar Conductance
	12.6 Kohlrausch’s Law
		12.6.1 Applications of Kohlrausch's Law
		12.6.2 Conductometric Titrations
	12.7 Electrolysis
	12.8 Overvoltage
		12.8.1 Cathode Products
		12.8.2 Anode Products
		12.8.3 Mercury Cathodes
	12.9 Faraday’s Laws of Electrolysis
		12.9.1 Faraday's First Law of Electrolysis
		12.9.2 Faraday’s Second Law of Electrolysis
		12.9.3 Application of Electrolysis
	12.10 Batteries
		12.10.1 Primary Cells
		12.10.2 Secondary Cells
		12.10.3 Fuel Cells
	12.11 Corrosion
		12.11.1 Hydrogen Evolution Type
		12.11.2 Differential Oxygenation Corrosion
		12.11.3 Passivity of Metals
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 13: Stoichiometry
	13.1 Atomic Weights and Equivalent Weights
		13.1.1 Determination of Equivalents
		13.1.2 Determination of Atomic Weights (Chemical Methods)
		13.1.3 Physical Methods of Determining Atomic Masses
	13.2 Molecular Weights and Formulae of Gases
	13.3 Methods for Determination of Density
	13.4 Eudiometry or Gas Analysis
		13.4.1 Abnormal Vapour Densities
	13.5 Balanced Chemical Equation
		13.5.1 Information Conveyed by Chemical Equation
		13.5.2 Balancing of Chemical Equation
	13.6 Numerical Calculation Based on Chemical Equations
	13.7 Titrimetric Method of Analysis
		13.7.1 Acid-Base Titrations
		13.7.2 Redox Titrations
		13.7.3 Precipitation Titrations
		13.7.4 Complexometric Titrations
	Key Points
	Practice Exercise
	Answer Keys
	Hints and Solutions
Chapter 14: Surface Chemistry
14 A Adsorption
14.1 Introduction
14.2 Enthalpy of Adsorption
14.3 Types of Adsorption
14.4 Factors Affecting the Adsorption of Gas by Solid
14.5 Adsorption Isotherms
	14.5.1 Freundlich Isotherm
	14.5.2 Adsorption from Solution
	14.5.3 Langmuir Adsorption Isotherm- Langmuir Adsorption Equation
14.6 Applications of Adsorption
Key Points
14 B Catalysis
14.7 Introduction
	14.7.1 Promoters
	14.7.2 Catalytic Poisons or Anticatalysts
	14.7.3 Autocatalyst
	14.7.4 Induced Catalysis
14.8 Types of Catalysis
	14.8.1 Homogeneous Catalytic Reactions
	14.8.2 Heterogeneous Catalytic Reactions
14.9 Characteristics of Catalyst
14.10 Theories of Catalysis
	14.10.1 Intermediate Compound Formation Theory
	14.10.2 Adsorption Theory
	14.10.3 Activity and Selectivity of Heterogeneous Catalysis
	14.10.4 Shape Selective Catalysis by Zeolites
14.11 Enzyme Catalysis
	14.11.1 Characteristics of Enzyme Catalysis
	14.11.2 Mechanism of Enzyme Catalysis
Key Points
14 C Colloids
14.12 Introduction
14.13 Colloidal State –An Intermediate State
	14.13.1 Classification of Colloids
	14.13.2 Classification Based on Physical State of Dispersed Phase and Dispersion Medium
	14.13.3 Classification Based Upon Appearance
	14.13.4 Classification Based on Interaction of Phases
	14.13.5 Classification Based on Type of Particles of Dispersed Phase
	14.13.6 Classification Based on Charge
14.14 Preparation of Colloids
14.15 Purification of Sols
14.16 Properties of Colloidal Solutions
	14.16.1 Physical Properties
	14.16.2 Colligative Properties
	14.16.3 Optical Properties
	14.16.4 Kinetic Properties
	14.16.5 Electrical Properties
	14.16.6 Origin of Charge
	14.16.7 Electrical Double Layer
	14.16.8 Electrosmosis
14.17 Stability of Colloids
	14.17.1 Coagulation
	14.17.2 Hardy–Schulz Law
	14.17.3 Coagulation of Lyophilic Sols
	14.17.5 Gold Number
14.18 Emulsions
	14.18.1 Theories of Emulsification
14.19 Associated Colloids
14.20 Gels
14.21 Applications of Colloids
Key Points
Practice Exercise
Answer Keys
Hints and Solutions
Chapter 15: Nuclear Chemistry
	15.1 Discovery of Natural Radioactivity
		15.1.1 Radioactive Radiations
		15.1.2 Nuclear Stability
		15.1.3 Measurement of Radioactivity
		15.1.4 Units of Radioactivity
	15.2 Nuclides
		15.2.1 Types of Radioactive Decay
		15.2.2 Disintegration Theory
		15.2.3 Soddy–Fajan–Russel’s Group Displacement Law
	15.3 Rate of Disintegration
		15.3.1 Half-Life Period
		15.3.2 Average Life or Mean Life Period
		15.3.3 Radioactive Equilibrium
		15.3.4 Parallel Path Decay
		15.3.5 Maximum Yield of Daughter Nuclide
	15.4 Radioactive Disintegration Series
	15.5 Theories of Nuclear Stability
		15.5.1 Neutron / Proton (n/p) Ratio
		15.5.2 Mass Defect–Binding Energy
		15.5.3 Mass Defect and Packing Fraction
	15.6 Nuclear Reactions
		15.6.1 Nuclear Reactions Versus Chemical Reactions
		15.6.2 Artificially Induced Nuclear Reactions
		15.6.3 Types of Nuclear Reactions
		15.6.4 Artificial or Induced Radioactivity
		15.6.5 Cause of Artificial Radioactivity – Bohr Theory of Compound Nucleons
		15.6.6 Nuclear Fission
		15.6.7 Nuclear Fusion
		15.6.8 Plutonium and the Actinides
	15.7 Radioactive Isotopes as Tracers
	15.8 Aplications of Radioactive Isotopes
		15.8.1 Carbon Dating
		15.8.2. The Age of the Earth
		15.8.3. Applications in Industry
		15.8.4 Application in Agriculture
		15.8.5 Application in Medicine
		15.8.6 Therapeutic Uses
		15.8.7 Applications in Biochemistrys
		15.8.8 Applications of Radioisotopes in Chemistry
	Answer Keys
	Practice Exercise
	Answer Keys
	Hints and Solutions




نظرات کاربران