ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physical and Chemical Separation in Water and Wastewater Treatment

دانلود کتاب جداسازی فیزیکی و شیمیایی در تصفیه آب و فاضلاب

Physical and Chemical Separation in Water and Wastewater Treatment

مشخصات کتاب

Physical and Chemical Separation in Water and Wastewater Treatment

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781789061291, 9781789061314 
ناشر: IWA Publishing 
سال نشر: 2020 
تعداد صفحات: 690 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Physical and Chemical Separation in Water and Wastewater Treatment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جداسازی فیزیکی و شیمیایی در تصفیه آب و فاضلاب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Physical and Chemical Separation in Water and Wastewater Treatment
Copyright
Contents
Introduction
1. Earth: The water planet
	1.1 The Presence of Water on Earth
		1.1.1 Planets of the solar system
		1.1.2 Earth, the water planet
		1.1.3 Origin of the Earth’s water
		1.1.4 Water circulation
	1.2 Water Circulation
		1.2.1 The spectrum of water circulation
		1.2.2 Water treatment processes
	1.3 Basins and Water Systems
		1.3.1 Basin composition
		1.3.2 Metabolism of urban areas
		1.3.3 Water environment district and environmental lakes
	Reference
2. Properties and impurities of water
	2.1 The Water Molecule
		2.1.1 Structure and nature of water
			2.1.1.1 Structure of water molecules
			2.1.1.2 Water and ice density and structure
			2.1.1.3 Three forms of water and latent heat/sensible heat
		2.1.2 Natural water conditions and impurities
			2.1.2.1 Hydrogen ion (concentration) index: pH
			2.1.2.2 Redox (OR) potential
			2.1.2.3 Water quality and impurities
			2.1.2.4 Colloidal suspensions
			2.1.2.5 Aqueous solution: soluble component
	2.2 Water and Humans
		2.2.1 Human water metabolism
			2.2.1.1 What is metabolism?
			2.2.1.2 Human water balance
			2.2.1.3 Socialization of water metabolism
		2.2.2 Poisons and risks (water quality standards)
			2.2.2.1 Classic water quality standards for human were epidemiological safety assurance
			2.2.2.2 Water quality standards in the 1960s and 1970s
			2.2.2.3 Expansion of standards for health risk control by trace contamination
			2.2.2.4 Mechanism of risk assessment
			2.2.2.5 Development and dissemination of instrumentation
			2.2.2.6 Assessment of risk by animal testing
			2.2.2.7 An approach to permissible risk level
			2.2.2.8 Calculation of the maximum allowable value
			2.2.2.9 Japanese drinking water quality standards
	2.3 Water and Ecosystems
		2.3.1 Dissolved oxygen control
			2.3.1.1 Insufficient dissolved oxygen in water
			2.3.1.2 Streeter–Phelps equation
			2.3.1.3 BOD test, COD, TOC
			2.3.1.4 Eckenfelder’s BOD-based aerobic biological treatment process design and operations
		2.3.2 Material circulation and pollution
			2.3.2.1 Natural circulation of carbons, nitrogen, etc., and pollution phenomena
			2.3.2.2 Synthesis (utilization) and decomposition of organic materials
			2.3.2.3 Circulation of nitrogen
			2.3.2.4 Circulation of sulphur
	Further Reading
	References
3. Understanding water separation processes and systems
	3.1 Evaluation of Treatability
		3.1.1 Water treatment system
		3.1.2 Separation and adjustment process
		3.1.3 Mechanisms for assessing the treatability of water impurities
	3.2 Separation Mechanism Depending on Differences in Physical Properties (Particle Size)
		3.2.1 Differences in physical propertie
		3.2.2 Size of impurities in water
		3.2.3 Impurity size distributions and removal limits
		3.2.4 Destabilization/separation of colloids by physicochemical mechanisms
		3.2.5 Application limit size of intragranular diffusion-type treatment
		3.2.6 Ion exchange
	3.3 Separation Mechanism Depending on Chemical Property Differences
		3.3.1 Equilibrium and the Le Chatelier Principle
		3.3.2 Three basic rules of thermodynamics
		3.3.3 Energy and enthalpy
		3.3.4 Entropy and free energy
		3.3.5 The energy balance and thermal characteristics of the Earth
	3.4 Detoxification and Impurity Concentrations
		3.4.1 Indication of concentrations
		3.4.2 Essential elements and trace elements
		3.4.3 Disinfection/sterilization
		3.4.4 Detoxification treatment by neutralization and complex formation
	3.5 Evaluation of Treatability using ‘Water Quality Conversion Matrices’
		3.5.1 Assessment of water quality conditions/treatability in water metabolic systems
		3.5.2 Construction of a matrix for water quality labeling
		3.5.3 Two-dimensional treatability evaluation by TOC/E260 ratio and molecular weight fraction
		3.5.4 Water quality conversion matrix
		3.5.5 Details of the water quality conversion matrix operation
		3.5.6 Process selection considering impurity concentration
		3.5.7 Removal of general organics in detail
		3.5.8 Removal rate estimation formula for general organic matter in a pseudo-two-component system
	3.6 Construction of a Water Treatment System
		3.6.1 Combining processes in a system
		3.6.2 Sewage reuse
		3.6.3 Combined waste treatment assuming denitrification/dephosphorization
		3.6.4 Process/system configuration: kinetics and dynamics
	Further Reading
	References
4. Particles and particle separation basics
	4.1 Coagulation Mechanisms of Colloids
		4.1.1 Nature of colloids
			4.1.1.1 Coagulation: Growth process of colloids for separation
			4.1.1.2 Aggregation and dispersion of colloidal particles
			4.1.1.3 Movement of colloids
				4.1.1.3.1 Brownian motion
				4.1.1.3.2 Diffusion by Brownian motion
				4.1.1.3.3 Viscosity of the colloidal suspension
			4.1.1.4 Optical properties of colloids
				4.1.1.4.1 Turbidity
				4.1.1.4.2 Tyndall effect
				4.1.1.4.3 Colloidal color
			4.1.1.5 Colloidal charge
		4.1.2 Stability of colloid suspensions
			4.1.2.1 Stability and instability of colloids
			4.1.2.2 Potential coagulation barriers and driving energy inducing collisions
			4.1.2.3 Kolmogorov’s theory of local isotropic turbulence
			4.1.2.4 Critical size for coagulation and flocculation to proceed
		4.1.3 Critical zeta potential for coagulation
		4.1.4 Coagulation rate
		4.1.5 Interparticle binding force and cross-linking coagulation
		4.1.6 Coagulation agents
		4.1.7 Coagulation patterns of suspensions by metallic salts
			4.1.7.1 Coagulation patterns of coarse suspensions (clays)
			4.1.7.2 Coagulation treatment of natural colored water
			4.1.7.3 Examples of colored water coagulation in the Eastern United States
			4.1.7.4 Mechanism of agglomeration of aluminium aquo-complexes and color colloids
			4.1.7.5 Structure of aluminium flocs produced
			4.1.7.6 Multicomponent coagulation
			4.1.7.7 Jar test
		4.1.8 Flocculation aids
			4.1.8.1 Synthetic polymeric coagulation aids
			4.1.8.2 Activated silicic acid (Baylis sol)
			4.1.8.3 Polysilica-ferric coagulants
		4.1.9 Flash mixers (rapid mixing)
	4.2 The Floc Forming Process
		4.2.1 Historical evolution of design theories: T.R Camp’s G-value and GT-value
		4.2.2 Amendment of Camp’s G-value and GT-value theory
		4.2.3 Floc densities
			4.2.3.1 Floc density measurement (structural density and fractal structure)
			4.2.3.2 Effective density
			4.2.3.3 The floc density function
			4.2.3.4 Coagulant dosage (ALT ratio) and floc densities
			4.2.3.5 Coagulation pH and floc densities
			4.2.3.6 Agitation intensity and floc density
			4.2.3.7 Effect of flocculation aids on floc density
			4.2.3.8 Effect of alkalinity on floc density
			4.2.3.9 Density functions of the various flocs
		4.2.4 Numerical model (simulation) of floc density function and fractal characteristics
			4.2.4.1 Simulation of floc structure
			4.2.4.2 A fractal physics perspective
			4.2.4.3 Background of the innovation
		4.2.5 Floc strength (Maximum growth size)
			4.2.5.1 Theories to find the largest growable floc diameter df
			4.2.5.2 Experimental evaluation of the relationship between maximum growth diameter dmax and effective agitation strength
			4.2.5.3 Estimation of floc strength
		4.2.6 Theoretical description of the flocculation process
			4.2.6.1 Basic formula for collision
			4.2.6.2 Particle size growth
			4.2.6.3 Growth and particle size distribution estimation of floc groups
			4.2.6.4 Four parameters defining the flocculation process: m, S, K., and
			4.2.6.5 Normalization of floc size distributions
			4.2.6.6 Experimental verification of the theory
			4.2.6.7 Design of a flocculator using a flocculation process control diagram
		4.2.7 Contact flocculation
			4.2.7.1 Contact flocculation in a turbulent stirring tank
			4.2.7.2 Contact flocculation in floc blanket type fluidized beds
		4.2.8 Flash mixer and floccculator
			4.2.8.1 Flash mixer (Rapid mixing pond)
			4.2.8.2 Flocculator (floc-growth operation)
			4.2.8.3 Chemical injection device
	4.3 Pellet Flocculation (Metastable State Agglomeration)
		4.3.1 High-speed separation of highly turbid water by a pellet fluidized bed
			4.3.1.1 Concepts of coagulation pelleting by fluidized bed
			4.3.1.2 Pellet fluidized bed separator
			4.3.1.3 Aging of the pelletized fluidized bed and reaching steady state
			4.3.1.4 Laminated adhesion of microflocs
			4.3.1.5 Concentric spherical growth of pellets
			4.3.1.6 Effective density of pellets
			4.3.1.7 Effect of upflow rate of fluidized bed
			4.3.1.8 Aluminium dosing condition to set pellet coagulation
			4.3.1.9 Investigation of injection conditions for organic polymer flocculation aids
			4.3.1.10 Injection procedures for poly-aluminium chloride (PACl) and crosslinking organic polymers
			4.3.1.11 Operation results under optimal injection conditions: Conclusions
		4.3.2 Treatment of high turbidity water and colored water by a pellet fluidized bed
			4.3.2.1 Experimental description of the system
			4.3.2.2 Results and discussions of the treatment mechanism
	4.4 Coagulation and Flocculation for Flotation (Air Bubble-Solid Diplophase Coagulation)
		4.4.1 Agglomeration of air bubbles and solid colloids for dissolved air flotation
			4.4.1.1 Outline of air flotation method
			4.4.1.2 Adhesion of bubbles to floc particles and flotation process
		4.4.2 Kinetics of air bubble-solid agglomerate formation in dissolved air flotation
			4.4.2.1 Collision formula for bubble and floc groups
			4.4.2.2 Kinetics of the bubble deposition process
			4.4.2.3 Dimensionless formula and practical solutions of the kinetic equations
			4.4.2.4 Calculation of floating rate of air bubble-solid coupled floc
			4.4.2.5 Experimental model validation
	Further Reading
	References
5. Precipitation of soluble inorganic components
	5.1 Precipitative Separation of Metals
		5.1.1 Alkali precipitation of heavy metals
		5.1.2 Hard water softening treatment
	5.2 Water Softening by Pellet Fluidized Beds: Metastable State Treatment
		5.2.1 Overview of pellet softening method
		5.2.2 Removal pattern of the pellet softening operation
		5.2.3 Equilibrium study of water softening reaction in a fluidized bed
		5.2.4 Kinetics of the pellet softening process
	5.3 Treatment of Iron, Manganese, etc.
		5.3.1 Oxidation of iron and manganese
		5.3.2 Treatment of iron at normal pH
			5.3.2.1 Precipitation treatment of Fe2+ in natural water by oxidizing treatment such as aeration
			5.3.2.2 Chemical oxidation treatment of iron
			5.3.2.3 Iron removal by filtration
		5.3.3 Manganese treatment at normal pH
			5.3.3.1 Oxidation by potassium permanganate
			5.3.3.2 Catalytic sand filtration method for Mn2+ removal using chlorine
		5.3.4 Treatment of iron, manganese, etc., by microbial filtration
		5.3.5 Arsenic precipitation treatment
			5.3.5.1 Oxidation of As (III) to As(V)
			5.3.5.2 Oxidation/filtration (co-precipitation of arsenic with iron)
			5.3.5.3 Other arsenic treatment
	Further Reading
	References
6. Solid–liquid separation processes
	6.1 Sedimentation and Gravitational Separation
		6.1.1 Sedimentation
			6.1.1.1 Classification of sedimentation
			6.1.1.2 Single particle settling formula
			6.1.1.3 Determination of the coefficient of resistance CD and various settling velocities
			6.1.1.4 Correction for particle shapes other than spheres
			6.1.1.5 Sedimentation separation of free settling particles
			6.1.1.6 Measurement of sedimentation velocity distribution of particle groups
			6.1.1.7 Coagulated sedimentation: agglomeration phenomena in the sedimentation process
			6.1.1.8 Experimental assessment of coagulation (flocculent) settling
			6.1.1.9 Hindered settling and zone (stratified) settling
			6.1.1.10 Sedimentation patterns of highly concentrated particles (consolidation)
			6.1.1.11 Theories expressing the state of zone settling
			6.1.1.12 Basic theory of horizontal flow sedimentation basin removal: overflow rate
			6.1.1.13 Setting the minimum water depth
			6.1.1.14 Design of a coagulated (flocculant) particle sedimentation basin
			6.1.1.15 Turbulence and flow deflection in a pond
			6.1.1.16 Types of horizontal flow sedimentation basins and substructures
			6.1.1.17 Characteristics of an upflow clarifier
			6.1.1.18 Floc blanket (fluidized bed) sedimentation basins
			6.1.1.19 Thickening ponds (thickeners)
		6.1.2 Flotation
			6.1.2.1 Overview of various flotation treatment
			6.1.2.2 Binding of suspended particles and air bubbles
			6.1.2.3 Flotation rate of solid and gas agglomerated particles
			6.1.2.4 Chemicals for flotation treatment
			6.1.2.5 Dissolved air flotation
			6.1.2.6 Dissolution of air and precipitation of air bubbles
			6.1.2.7 Process requirements for the dissolution air flotation method
	6.2 Filtration
		6.2.1 Depth filtration (inner filtration)
			6.2.1.1 Granular filtering materials
			6.2.1.2 Flow through a fixed bed
			6.2.1.3 Fluidized bed flow
			6.2.1.4 Overview of suspension removal mechanisms in granular bed filtration
			6.2.1.5 Filter bed transport process
			6.2.1.6 Attachment step of filter bed removal
			6.2.1.7 Kinetics of suspension retention
			6.2.1.8 Filtration head loss by retained suspensions
			6.2.1.9 Composition of the filter layer
			6.2.1.10 Washing the filter with water
			6.2.1.11 Operation of gravitational filtration
			6.2.1.12 Slow sand filtration and rapid sand filtration
		6.2.2 Cake filtration (surface filtration)
			6.2.2.1 Solid thickening from a water treatment process
			6.2.2.2 Cake (dewatering) filter
			6.2.2.3 Cake filtration theories
			6.2.2.4 Filtration pretreatment (sludge conditioning)
	Further Reading
	References
7. Adsorption and ion exchange
	7.1 Adsorption
		7.1.1 Adsorption phenomenon
			7.1.1.1 Heat of adsorption
			7.1.1.2 Physical sorption and chemical sorption
			7.1.1.3 Adsorption equilibrium and adsorption rate
			7.1.1.4 Adsorbent
			7.1.1.5 Adsorption characteristics (absorbability)
		7.1.2 Theory of adsorption
			7.1.2.1 Adsorption equilibrium
			7.1.2.2 Adsorption rate
		7.1.3 Absorber operating theory
			7.1.3.1 Batch adsorption
			7.1.3.2 Fixed bed adsorption
			7.1.3.3 Fluidized bed adsorption
			7.1.3.4 Fixed bed adsorption process with repeated backwashing
		7.1.4 Regeneration of activated carbon
			7.1.4.1 Recycling of used activated carbon
			7.1.4.2 Recycling process
		7.1.5 Humic substances (NOM) and activated carbon adsorption
			7.1.5.1 Adsorption of activated carbon with humic substances and waste components of microbial metabolism
			7.1.5.2 Activated carbon adsorption characteristics of trace hazardous organic components in coexistence with humic substances
			7.1.5.3 Rapid evaluation of fixed-bed adsorption process by microcolumn method
		7.1.6 Activated carbon treatment for odor and taste
			7.1.6.1 Measurement and evaluation of odor and taste
			7.1.6.2 Powdered activated carbon (PAC) and granular activated carbon (GAC) treatment
	7.2 Ion Exchange
		7.2.1 Ion exchange phenomenon
		7.2.2 Ion exchanger
		7.2.3 Types of ion exchange resins
			7.2.3.1 Strong-acidic cation exchange resin
			7.2.3.2 Strong basic anion exchange resin
			7.2.3.3 Weakly acid cation exchange resin
			7.2.3.4 Weakly basic anion exchange resins
			7.2.3.5 Gel and macroreticular (MR) resins
		7.2.4 Chemical properties of ion exchangers (resins)
			7.2.4.1 Ion exchange capacity
			7.2.4.2 Ion exchange equilibrium and exchange selectivity
		7.2.5 Ion exchange operation
			7.2.5.1 Classification of operation schemes
			7.2.5.2 Fixed-bed ion exchange systems and operation
		7.2.6 Ion exchange as a water treatment process
			7.2.6.1 Water softening treatment
			7.2.6.2 Water softening by dealkalization
			7.2.6.3 Desalination for pure water production
			7.2.6.4 Zeolite treatment
	Further Reading
	References
8. Membrane separation
	8.1 Development of a Functional Membrane Separation Process
	8.2 Membrane Separations
		8.2.1 Membrane structure
			8.2.1.1 Flat membrane (module)
			8.2.1.2 Hollow fiber membranes (cased and non-cased types)
			8.2.1.3 Ceramic membranes
		8.2.2 Separation mechanism
		8.2.3 Membrane degradation and fouling
		8.2.4 Membrane resistance factors induced by membrane fouling
			8.2.4.1 Cake resistance and concentration polarization resistance
			8.2.4.2 Boundasry layer resistance and boundary layer digging
		8.2.5 Reversible and irreversible resistance
		8.2.6 Pre-coagulation treatment for UF membrane treatment
		8.2.7 Membrane washing
	8.3 Comparison of UF and MF Membranes
		8.3.1 Pore size and exclusion limit molecular mass for direct filtration
		8.3.2 Selection of appropriate UF membranes
	8.4 UF and MF Membrane Treatment Facilities
	8.5 Reverse Osmosis (RO) and Nanofiltration (NF) Membranes
		8.5.1 Osmotic pressure and RO
		8.5.2 Formation and structure of RO membranes
		8.5.3 Mechanism of RO membrane separation
		8.5.4 Configuration of RO membrane devices (process operation)
		8.5.5 RO membrane for NF membrane manipulation
	8.6 Membrane Bioreactors (MBRs)
		8.6.1 The membrane separation activated sludge method
		8.6.2 Denitrification by MBR (aerobic and anaerobic treatment)
	Further Reading
	References
Index
Cover back




نظرات کاربران