دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Fosso-Kankeu E., Pandey S., Ray S.S. (ed.) سری: ISBN (شابک) : 9781394166299 ناشر: Wiley & Sons سال نشر: 2023 تعداد صفحات: 356 [357] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوتو راکتورها در فرآیند اکسیداسیون پیشرفته: آینده تصفیه فاضلاب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتابی منحصر به فرد که موضوعات مربوط به مفاهیم، طراحی و کاربرد فتوراکتورهای در حال تکامل و همچنین سنتز سبز فوتوکاتالیستهای ناهمگن را پوشش میدهد که جنبههای کلیدی برای تسهیل تشدید کار در مقیاس نیمکت به سمت کاربردهای صنعتی/تجاری است. در این کتاب، ویراستاران بهروزترین تحقیقات را در مورد فرآیندهای اکسیداسیون پیشرفته (AOPs) ارائه میکنند تا استدلال کنند که AOPs یک روش سازگار با محیط زیست برای تصفیه فاضلاب ارائه میکند. علاوه بر مروری بر اصول و کاربردها، جزئیات فراوانی از گونههای واکنشدهنده درگیر در AOPها و همچنین مفاهیم طراحی راکتور ارائه میکند، بنابراین ابزارهای لازم برای درک و اجرای بهتر این روشها را در اختیار خوانندگان قرار میدهد. علاوه بر این، این کتاب برخی از فتوراکتورهای معمولی و جدید مجهز به لامپهای UV/vis را برای کار تحت تابش خورشیدی برای تصفیه فاضلاب در آزمایشگاه و در مقیاس صنعتی ارائه میکند که تمرکز مهم کتاب است. خوانندگان در این کتاب خواهند یافت: پوشش عمیق عملکرد فتوکاتالیست های ناهمگن سازگار با محیط زیست پایدار و کم هزینه (فتوکاتالیست های بیوژنیک)؛ یک بررسی اساسی پیشرفته از پارامترهای مؤثر بر طراحی فتوراکتور برای عملکرد مؤثر گونههای واکنشپذیر. فرآیندها و فناوریهای توسعهیافته را شناسایی، فرمولبندی و تجزیه و تحلیل میکند تا نیازهای مورد نظر حفاظت از محیط زیست جامعه را برآورده کند و راهحلهایی را تدوین کند که از نظر فنی مناسب، از نظر اقتصادی امکانپذیر و از نظر اجتماعی قابل قبول باشند. حضار این کتاب مورد توجه محققان دانشگاهی و دانشجویان فارغ التحصیل رشتههای محیطزیست، شیمی و مهندسی و متخصصان از جمله مدیران محیطزیست در صنعت، مدیران و اپراتورهای تصفیهخانههای آب، مقامات آب، نهادهای نظارتی دولتی و محیطبانان خواهد بود.
Unique book covering topics related to the evolving photoreactors concepts, design, and application as well as green synthesis of heterogenous photocatalysts which are the key aspects to facilitate the escalation of bench scale works toward industrial/commercial applications. In this book, the editors present the most up-to-date research on Advanced Oxidation Processes (AOPs) to make the argument that AOPs offer an eco-friendly method of wastewater treatment. In addition to an overview of the fundamentals and applications, it provides ample details of the reactive species involved in AOPs as well as reactor design concepts, thus providing readers with the necessary tools to better understand and implement these methods. Moreover, this book presents some conventional and novel photoreactors equipped with UV/vis lamps for working under solar radiation for wastewater treatment in a laboratory and on an industrial scale, which is an important focus of the book. Readers will find in this book: In-depth coverage of the performance of sustainable eco-friendly and low-cost heterogeneous photocatalysts (biogenic photocatalysts); A state-of-the-art fundamental review of parameters affecting photoreactor designs for the effective performance of reactive species; Identifies, formulates, and analyzes developed processes and technologies to meet desired environmental protection needs of society and formulates solutions that are technically sound, economically feasible, and socially acceptable. Audience This book will be of interest to academic researchers and graduate students from the fields of environment, chemistry, and engineering, and professionals including environmental managers in industry, water treatment plants managers and operators, water authorities, government regulatory bodies, and environmentalists.
Cover Half Title Also of Interest Photoreactors in Advanced Oxidation Process: The Future of Wastewater Treatment Copyright Contents Preface Part 1: Advances in Photocatalysts Synthesis 1. Advancement and New Challenges in Heterogeneous Photocatalysts for Industrial Wastewater Treatment Photocatalysts for Industrial Wastewater Treatment Abstract 1.1 Introduction 1.2 Development of Heterogeneous Photocatalysts 1.3 Mechanism of Action of Heterogeneous Photocatalysis 1.4 Recent Advances in Heterogeneous Photocatalyst 1.5 Heterostructure Photocatalysts for the Degradation of Organic Pollutants 1.6 Photoreactors 1.7 Photoreactors for the Degradation of Volatile Organic Compounds 1.7.1 Annular Reactors 1.7.2 Plate Reactor 1.7.3 Packed Bed Reactors 1.7.4 Honeycomb Monolith Reactors 1.7.5 Fluidized Bed Reactors 1.7.6 Batch Reactors 1.7.7 Parabolic Trough Photoreactors 1.7.8 Inclined Flat Photoreactors 1.7.9 Gas Phase Photoreactors 1.8 Advantages and Disadvantages of Heterogeneous Photocatalysis 1.9 Conclusion Acknowledgment References 2. Role of Heterogeneous Catalysts for Advanced Oxidation Process in Wastewater Treatment Abstract Abbreviations 2.1 Introduction 2.1.1 Advanced Oxidation Processes (AOPs) 2.1.2 AOPs Classification 2.1.2.1 Catalytic Oxidation 2.1.2.2 Heterogeneous Catalytic Oxidation 2.2 Effect of Pollutant 2.3 Type of Catalysts 2.3.1 Metal Organic Frameworks 2.3.1.1 Hydro (Solvo) Thermal Technique 2.3.2 Metal Oxides 2.3.2.1 Coprecipitation Method 2.3.2.2 Hydrothermal Synthesis 2.3.2.3 Sol-Gel Process 2.3.2.4 Bioreduction Method 2.3.2.5 Solvent System-Based Green Synthesis 2.3.3 Perovskites 2.3.3.1 Ultrasound-Assisted Synthesis of Perovskites 2.3.3.2 Microwave-Assisted Synthesis of Perovskites 2.3.3.3 Mechanosynthesis of Perovskites 2.3.4 Layered Double Hydroxides 2.3.4.1 Coprecipitation by the Addition of Base 2.3.5 Graphene 2.3.5.1 Electrochemical (EC) Processes 2.3.5.2 Water Electrolytic Oxidation 2.4 Some Recent Heterogeneous Catalysts for Advanced Oxidation Process 2.5 Conclusions and Future Prospect Acknowledgement References 3. Green Synthesis of Photocatalysts and its Applications in Wastewater Treatment Abstract 3.1 Introduction 3.2 Photocatalysts and Green Chemistry 3.2.1 Nanophotocatalysts (NPCs) 3.2.2 Plant-Mediated Green Synthesis of NPCs 3.2.3 Biopolymer-Mediated Synthesis of NPCs 3.2.3.1 Alginic Acid 3.2.3.2 Carrageenan 3.2.3.3 Chitin and Chitosan 3.2.3.4 Guar Gum 3.2.3.5 Cellulose 3.2.3.6 Xanthan Gum 3.2.4 Green Synthesis of NPCs Using Bacteria, Algae, and Fungus 3.2.5 Characterization of NPCs Using Various Analytical Techniques 3.2.5.1 UV-Visible Spectroscopy 3.2.5.2 XRD 3.2.5.3 SEM, HR-TEM, EDX, and AFM 3.2.5.4 Fourier Transform Infrared Spectroscopy 3.2.5.5 Dynamic Light Scattering 3.2.5.6 Brunauer-Emmett-Teller (BET) 3.2.5.7 Barrett-Joyner-Halenda 3.2.6 Application of Green Synthesized NPCs in Wastewater Treatment 3.3 Limitations and Future Aspects 3.4 Conclusion References 4. Green Synthesis of Metal Ferrite Nanoparticles for the Photocatalytic Degradation of Dyes in Wastewater Abstract Abbreviations 4.1 Introduction 4.2 Metal Ferrite Nanoparticles 4.3 General Synthesis Methods of Metal Ferrites and Their Limitations 4.4 Biological Synthesis of Metal Ferrite Nanostructures 4.4.1 Synthesis of Metal Ferrite Nanostructures Using Bacteria 4.4.2 Synthesis of Metal Ferrites Nanostructures Using Fungi 4.4.3 Synthesis of Metal Ferrites Nanostructures Using Plant Extracts 4.5 Plant-Derived Metal Ferrites as Photocatalysts for Dye Degradation 4.5.1 Effect of Depositing Noble and Transition Metal on Metal Ferrites for Photodegradation 4.5.2 Effect of Carbon Deposited on Metal Ferrites for Photocatalytic Degradation 4.5.3 Effect of Coupling Metal Oxide Semiconductors with Metal Ferrites for Photocatalytic Degradation 4.5.4 Biological Applications of Plant-Derived Metal Ferrites 4.6 Challenges of these Materials and Photocatalysis 4.7 Conclusion: Future Perspectives References Part 2: Advanced Oxidation Processes 5. Selected Advanced Oxidation Processes for Wastewater Remediation Abstract 5.1 Introduction 5.2 Photocatalysis and Ozonation 5.2.1 Photocatalysis 5.2.2 Ozonation 5.3 Hybrid AOP Technologies 5.3.1 Hydrodynamic Cavitation 5.3.2 Hybrid AOP Systems Based on Hydrodynamic Cavitation 5.3.3 Hybrid AOP Systems Based on Ultrasound Radiation 5.3.3.1 Sonoelectrochemical Oxidation 5.3.3.2 Sonophotocatalytic Degradation 5.4 Membrane-Based AOPs 5.5 Conclusion and Future Perspectives References 6. Advanced Oxidation Processes-Mediated Removal of Aqueous Ammonia Nitrogen in Wastewater Abstract Abbreviations 6.1 Introduction 6.2 Basic Chemistry and Occurrence of Ammonia Nitrogen 6.2.1 Basic Chemistry of Ammonia Nitrogen 6.2.2 Sources of Ammonia Nitrogen 6.2.3 Effects of Ammonia Nitrogen on Aquaculture Species 6.3 Photocatalytic Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater 6.3.1 TiO2/TiO2-Based Photocatalyst 6.3.2 Modified TiO2 Photocatalyst 6.4 Ozonation Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater 6.4.1 Noncatalytic Ozonation of Ammonia Nitrogen 6.4.2 Catalytic Ozonation of Ammonia Nitrogen 6.5 Conclusion and Future Prospects Acknowledgments References Part 3: Design and Modelling of Photoreactors 7. Recent Advances in Photoreactors for Water Treatment Abstract 7.1 Introduction 7.2 Photocatalysis Fundamentals and Mechanism 7.3 Configuration of Photoreactor 7.3.1 Source of Light Irradiation 7.3.2 Geometry of Photoreactor 7.3.3 Light Source Placement and Distribution 7.3.4 Photoreactor Materials 7.4 Types of Photoreactors 7.4.1 Slurry Photoreactors 7.4.2 Photocatalytic Membrane Photoreactors 7.4.3 Rotating Drum Photoreactors 7.4.4 Microphotoreactors 7.4.5 Annular Photoreactor (APR) 7.4.6 Closed-Loop Step Photoreactors 7.5 Photocatalytic Water Purification Using Photoreactors 7.6 Challenges for Effective Photoreactors 7.7 Conclusion References 8. Design of Photoreactors for Effective Dye Degradation Abstract Abbreviations 8.1 Introduction 8.1.1 Mechanisms and Theory of AOP 8.1.2 Design of Photoreactors 8.1.2.1 Source of Irradiation 8.1.2.2 Wavelength/Lamp Selection 8.1.3 Placement of Light Source and Light Distribution 8.2 Different Photoreactors Are Used for Wastewater Treatment 8.2.1 Some Typical Photoreactors Used for Wastewater Treatment Are Described Below 8.2.2 Homogenous and Heterogenous Systems 8.2.3 Heterogenous Photocatalyst Arrangement 8.2.4 Amount of Photocatalyst 8.3 Photoreactors Designed to Work Under Visible-Light Irradiation Toward Wastewater Treatment 8.3.1 Limitations of the Currently Employed Photoreactors and Future Scope 8.4 Current and Future Developments References 9. Simulation of Photocatalytic Reactors Abstract Abbreviations 9.1 Introduction 9.2 Modeling of Light Distribution 9.2.1 Light Distribution 9.2.2 Light Distribution Methods 9.2.3 Simulation Parameters 9.2.4 Influence of Bubbles on Light Distribution 9.2.5 Validation of Light Distribution Models 9.3 Photocatalysis Kinetics 9.4 Conclusion References 10. The Development of Self-Powered Nanoelectrocatalytic Reactor for Simultaneous Piezo-Catalytic Degradation of Bacteria and Organic Dyes in Wastewater Abstract Abbreviations 10.1 Introduction 10.2 Degradation Techniques 10.2.1 Electrochemical Advanced Oxidation Processes (EAOPs) 10.3 Characteristics and Properties of Piezoelectric Materials 10.3.1 Natural Piezoelectric Materials 10.3.2 Synthetic Piezoelectric Materials 10.4 Synthesis of Piezoelectric Materials 10.4.1 Electrospinning Technique 10.4.2 Template Synthesis 10.4.3 Mixed Metal Oxide (MMO)/Solid State Synthesis 10.4.4 Hydrothermal/Solvothermal Method 10.4.5 Sol-Gel Method 10.5 Challenges of Piezoelectric Nanomaterials/Nanogenerators 10.6 Application of Piezoelectric Materials for Piezo-Electrocatalytic Degradation of Dyes and Bacteria in Wastewater 10.6.1 Piezo-Electrocatalytic Degradation of Organic Dyes and Bacteria in Wastewater 10.7 Conclusion and Future Perspectives Acknowledgments References Index