دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Nilesh M. Mahajan, Avneet Saini, Nishikant A. Raut, Sanjay J. Dhoble سری: ISBN (شابک) : 0323898394, 9780323898393 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 476 [478] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 76 Mb
در صورت تبدیل فایل کتاب Photophysics and Nanophysics in Therapeutics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فتوفیزیک و نانوفیزیک در درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فتوفیزیک و نانوفیزیک در درمان به بررسی آخرین پیشرفتها و کاربردهای فتوتراپی و نانوتراپی میپردازد که کاربرد نور، تابش و نانوتکنولوژی در درمان را به همراه اصول اساسی فیزیک در درمان پوشش میدهد. این مناطق این کتاب که از دو بخش تشکیل شده است، ابتدا طیف وسیعی از فصول را در بر می گیرد که فتوتراپی را پوشش می دهد، از مبانی درمان فتودینامیک (PDT) تا کاربردهایی مانند درمان سرطان و پیشرفت در رادیوتراپی، فیزیک کاربردی در درمان رادیوتراپی سرطان، و نقش پرتو یون کربن. درمان. بخشهای دیگر نانودرمانی، کاربردها و چالشهای بالقوه، و نانوتراپی برای دارورسانی به مغز را پوشش میدهد.
فصلهای پایانی به نانوتکنولوژی در تشخیص و درمان سرطانها، نقش نانوحاملها میپردازد. برای درمان اچآیوی، نانوذرات برای درمان آرتریت روماتوئید، نانومواد فعالشده با پپتید بهعنوان حسگرهای میکروبی، و نانوعاملهای ترانوستیک.
Photophysics and Nanophysics in Therapeutics explores the latest advances and applications of phototherapy and nanotherapy, covering the application of light, radiation, and nanotechnology in therapeutics, along with the fundamental principles of physics in these areas. Consisting of two parts, the book first features a range of chapters covering phototherapeutics, from the fundamentals of photodynamic therapy (PDT) to applications such as cancer treatment and advances in radiotherapy, applied physics in cancer radiotherapy treatment, and the role of carbon ion beam therapy. Other sections cover nanotherapeutics, potential applications and challenges, and nanotherapy for drug delivery to the brain.
Final chapters delve into nanotechnology in the diagnosis and treatment of cancers, the role of nanocarriers for HIV treatment, nanoparticles for rheumatoid arthritis treatment, peptide functionalized nanomaterials as microbial sensors, and theranostic nanoagents.
Front cover Half title Full title Copyright Contents Contributors Section 1 - Phototherapeutics Chapter 1 - Phototherapy: A critical review 1.1 Introduction 1.2 Background 1.2.1 Historical perspective of phototherapy 1.2.1.1 Progress in the twentieth century 1.2.2 Overview on various types of phototherapies 1.2.2.1 UVB therapy 1.2.2.2 UVA therapy 1.2.2.3 PUVA therapy 1.2.2.4 Home phototherapy 1.3 Various light sources and methods of phototherapy 1.3.1 Fluorescent tubes 1.3.2 Halogen spotlights 1.3.3 Fiberoptic blankets 1.3.4 Light-emitting diodes 1.3.5 Filtered sunlight 1.4 Applications and limitations of phototherapy 1.4.1 Application in neonatal jaundice 1.4.2 Application for morphea, scleroderma, and other sclerosing skin conditions 1.4.3 Application for cancer 1.4.4 Limitations of home phototherapy and sunlight 1.5 Recent developments and future scopes 1.5.1 The immunoregulatory effects of phototherapy: Possible pathways 1.5.2 Handheld phototherapy: Targeting difficult-to-treat psoriasis in the office and at home 1.5.3 The excimer laser: A potential new indication and a novel dosimetry protocol 1.5.4 Phototherapy and biologic agents: Combination therapy for recalcitrant psoriasis 1.5.5 Future scope References Chapter 2 - Phototherapy for skin diseases 2.1 Introduction 2.1.1 The epidermis 2.1.1.1 Dermis 2.1.2 The hypodermis 2.2 Major functions of the skin 2.3 Skin diseases and their etiology 2.4 Bacterial skin diseases 2.5 Fungal skin diseases 2.6 Viral skin diseases 2.7 Tropical ulcers 2.8 HIV related skin diseases 2.9 Pigmentation disorders 2.10 Parasitic infections 2.11 Tumors and cancers 2.12 Trauma 2.13 Skin tests 2.14 Heliotherapy 2.15 Naturopathy modalities on inflammation and immunity 2.16 Phototherapy for skin diseases 2.17 Methods 2.17.1 UVB radiations 2.17.2 UVA radiation 2.17.3 PUVA 2.17.4 Diseases and their treatment using phototherapy 2.17.4.1 Vitiligo 2.17.4.2 Atopic dermatitis 2.17.4.3 Psoriasis 2.17.4.4 Impetigo 2.17.4.5 Folliculitis 2.17.4.6 Acne vulgaris 2.17.4.7 Fungal skin diseases 2.17.4.8 Lymphoma 2.17.4.9 Scleroderma 2.17.5 Limitations of phototherapy for skin diseases 2.17.6 Side effects of phototherapy 2.17.7 Recent development and future scope 2.18 Concluding remark Abbreviations References Chapter 3 - Phototherapy: The novel emerging treatment for cancer 3.1 Introduction 3.2 Photophysics and photochemistry 3.2.1 Type I mechanism of photodynamic reaction 3.2.2 Type II mechanism of photodynamic reaction 3.3 Photodynamic targets at the molecular level 3.3.1 Proteins 3.3.2 Photodynamic therapy-induced lipid peroxidation 3.3.3 Photosensitized modification of nucleic acids 3.4 Light source 3.4.1 Near infrared (NIR) light 3.4.2 X-ray 3.4.3 Interstitial light 3.4.4 Internal light 3.5 Changes in cell signaling after photodynamic therapy 3.5.1 Calcium 3.5.2 Lipid metabolism 3.5.3 Tyrosine kinases 3.5.4 Transcription factors 3.5.5 Cellular adhesion 3.5.6 Cytokines 3.5.7 Stress response 3.5.8 Hypoxia and angiogenesis 3.6 Method of excitation for photosensitizing agents 3.6.1 Intermolecular chemically induced electronic excitation 3.6.2 Resonance energy transfer excitation 3.6.3 Two-stage photosensitizer excitation/excitation by radiation energy transfer intermediary 3.6.4 Cherenkov radiation energy transfer 3.7 Photodynamic therapy modifications 3.7.1 Nanotechnology on photodynamic therapy 3.7.2 Application of liposomes and lipoproteins 3.7.3 Photodynamic therapy supported by electroporation 3.8 Conclusion Acknowledgment Statement of informed consent Conflict of interest References Chapter 4 - Fundamentals of photodynamic therapy 4.1 Introduction 4.2 Basic concept of photodynamic therapy 4.2.1 Photosensitizers 4.2.1.1 Porphyrin-based photosensitizers 4.2.1.1.1 First generation photosensitizers 4.2.1.1.2 Second generation photosensitizers 4.2.1.1.3 Third generation photosensitizers 4.2.1.2 Nonporphyrin-based photosensitizers 4.3 Working mechanism 4.3.1 Mechanism of cell death following photodynamic therapy 4.3.1.1 Apoptosis 4.3.1.2 Necrosis 4.3.1.3 Autophagy 4.4 Advantages and disadvantages of photodynamic therapy 4.4.1 Apoptosis in photodynamic therapy 4.4.2 Immunological effects of photodynamic therapy 4.4.3 Biological effects of photodynamic therapy 4.4.4 Summarizing the advantages and disadvantages of photodynamic therapy 4.5 Essential wavelength region in photodynamic therapy 4.6 Recent developments in photodynamic therapy 4.6.1 Metal-organic frameworks 4.6.2 Photoactive materials for wavelength response 4.6.3 Photodynamic therapy and hypoxia-controlled nanomedicine 4.7 Future scopes and perspectives References Chapter 5 - Photodynamic therapy for cancer treatment 5.1 Introduction 5.2 Background of photodynamic therapy 5.2.1 Origin of photodynamic therapy 5.2.2 Mechanism of photodynamic therapy 5.2.3 Working principle of photodynamic therapy 5.2.4 Mechanism of photodynamic therapy in treatment of cancer 5.2.4.1 Tumor cell destruction 5.2.4.2 Vascular events 5.2.4.3 Immune system mediated photodynamic therapy 5.3 Novel strategies in photodynamic therapy 5.3.1 Metronomic photodynamic therapy 5.3.2 Photodynamic therapy molecular beacons 5.3.3 Nanotechnology in photodynamic therapy 5.4 Role of photosensitizing agents in photodynamic therapy 5.5 Application of photodynamic therapy in treatment of various cancers 5.5.1 Skin tumors 5.5.2 Head and neck tumors 5.5.3 Digestive system tumors 5.5.4 Urinary system tumors 5.5.4.1 Prostate cancer 5.5.4.2 Bladder cancer 5.5.5 Brain tumors 5.5.6 Nonsmall cell lung cancer and mesothelioma 5.6 Recent developments, future scope, and challenges 5.7 Conclusion Acknowledgment References Chapter 6 - Photodiagnostic techniques 6.1 Introduction 6.1.1 Ionizing radiations 6.2 Fundamentals of light used in diagnostic techniques 6.2.1 X-ray production 6.2.2 X-ray beam intensity 6.2.3 Target material 6.2.4 Voltage applied 6.2.5 X-ray tube current 6.3 Various photo diagnostic techniques 6.3.1 Plain radiography and digital radiography 6.3.2 Computed tomography 6.3.2.1 Computed tomography perfusion imaging 6.3.2.2 Cone beam computed tomography 6.3.2.3 Positron emission tomography in nuclear medicine 6.3.3 Fluoroscopy 6.3.4 Digital subtraction angiography 6.3.5 Digital radiography and picture archival and communication system 6.3.6 Dual energy X-ray absorptiometry 6.3.7 Dual energy computed tomography 6.3.8 Orthopantomography 6.4 Physics of photodiagnostic techniques 6.4.1 Interaction of radiation with matter 6.4.1.1 Attenuation 6.4.1.2 Rayleigh or coherent scattering 6.4.1.3 Compton scattering 6.4.1.4 Photoelectric effect 6.4.1.5 Pair production 6.4.2 Importance of interaction in tissue 6.4.2.1 Differential absorption 6.4.2.2 Atomic number 6.4.2.3 Mass density 6.4.2.4 Photon energy 6.4.3 Picture archiving and communication system 6.4.3.1 Fluoroscopy 6.4.3.2 Orthopantomography 6.4.3.3 Dual energy compute tomography 6.4.3.4 Prospective techniques 6.4.3.5 Retrospective techniques 6.5 Opportunities, challenges, and limitations of photodiagnostic techniques References Chapter 7 - The role of physics in modern radiotherapy: Current advances and developments 7.1 Introduction 7.2 Role of radiotherapy in cancer treatment 7.2.1 What is radiotherapy and how it works? 7.2.2 Types of radiotherapy 7.2.2.1 External beam radiation therapy for cancer 7.2.2.1.1 Types of beams used in radiation therapy 7.2.3 Types of external beam radiation therapy 7.2.3.1 Three dimensional conformal radiation therapy 7.2.3.2 Intensity-modulated radiation therapy 7.2.3.3 Image-guided radiation therapy (IGRT) 7.2.3.4 Tomotherapy 7.2.3.5 Stereotactic radiosurgery 7.2.3.6 Stereotactic body radiation therapy 7.2.3.7 Brachytherapy 7.2.3.8 Types of brachytherapy 7.2.4 General indications for the radiotherapy 7.2.5 Intent of radiotherapy treatment 7.2.6 Types of cancer treated using radiotherapy 7.2.7 The role of radiotherapy in cancer control 7.3 Development of radiation physics 7.3.1 History 7.3.2 External radiotherapy 7.3.3 Clinical radiation generators 7.3.3.1 Kilovoltage units 7.3.3.1.1 Grenz-ray therapy 7.3.3.1.2 Contact therapy 7.3.3.1.3 Superficial therapy 7.3.3.1.4 Orthovoltage therapy or deep therapy 7.3.3.1.5 Supervoltage therapy 7.3.3.1.6 Megavoltage therapy 7.3.4 Dose planning 7.4 Recent advancement in radiotherapy 7.4.1 Instigation 7.4.2 Radiotherapy principle and mechanism 7.4.3 Technology development 7.4.3.1 Three-dimensional conformal radiotherapy 7.4.3.2 Intensity modulated radiotherapy 7.4.3.2.1 Segmental IMRT 7.4.3.2.2 Dynamic IMRT 7.4.4 Image-guided radiotherapy treatment 7.4.4.1 Intertreatment motion 7.4.4.2 Intratreatment motion and their detection 7.4.5 Adaptive radiotherapy 7.4.6 Stereotactic radiosurgery and radiotherapy 7.4.7 Particle therapy 7.4.8 Summary 7.5 Radiosurgery for noncancerous tumor and diseases 7.5.1 Introduction 7.5.2 History 7.5.3 Treatment 7.5.4 Systems overview 7.6 Summary and conclusion References Chapter 8 - Physics in treatment of cancer radiotherapy 8.1 Introduction 8.1.1 Physics of radiotherapy 8.1.2 Structure of matter 8.1.3 Atom 8.1.4 Nucleus 8.1.5 Types of radiation 8.1.6 X-rays 8.1.7 Gamma rays 8.1.8 Particulate radiation 8.1.9 Interaction of radiation with matter 8.1.10 Interaction of photon beam (X-rays or γ rays) 8.1.11 Coherent scattering 8.1.12 Photoelectric effect 8.1.13 Compton effects 8.1.14 Pair production 8.1.15 Photodisintegration 8.1.16 Interaction of charged particle 8.1.17 Electron and electron interaction 8.1.18 Electron and nucleus interaction 8.1.19 Interaction of heavy charged particle 8.1.20 Biological effect of radiation 8.1.21 Linear energy transfer 8.1.22 Relative biological effectiveness 8.2 Principle of radiotherapy 8.2.1 Radiotherapy facility 8.3 Traditional facility in treatment of radiotherapy 8.3.1 Superficial therapy 8.3.2 Orthovoltage therapy or deep therapy 8.3.3 Supervoltage therapy machines 8.3.4 Cobalt-60 teletherapy unit 8.3.5 Betatron and microtron 8.3.6 Advance facility in treatment of radiotherapy 8.3.7 Linear accelerator (Linac) 8.3.8 Tomotherapy 8.3.9 CyberKnife 8.3.10 Proton and light ion therapy 8.3.11 Cyclotron 8.3.12 Synchrotron and synchrocyclotron 8.3.13 Add-on facility in treatment of radiotherapy 8.3.14 Conventional simulator 8.3.15 CT simulator 8.3.16 Commissioning of radiotherapy facility and quality assurance 8.3.17 Technique of radiotherapy 8.3.18 External beam radiation therapy 8.3.19 Conventional treatment techniques in EBRT 8.3.20 Three-dimensional conformal radiation therapy 8.3.21 Intensity modulated radiation therapy 8.3.22 Rotational therapy or volumetric modulated arc therapy (VMAT) 8.3.23 Stereotactic radiosurgery and stereotactic radiotherapy 8.3.24 Image-guided radiotherapy 8.3.25 Internal beam radiation therapy or brachytherapy 8.3.26 Process and treatment of radiotherapy 8.4 Patient preparation and simulation 8.5 Target delineation and treatment planning 8.5.1 Treatment verification and treatment delivery 8.5.2 Dosimetry in radiation therapy 8.5.3 Activity 8.5.4 Particle fluence 8.5.5 Energy fluence 8.5.6 Exposure 8.5.7 Kerma 8.5.8 Absorbed dose 8.5.9 Methods of radiation dosimetry and dosimeters in radiation therapy 8.5.10 Ionization chamber dosimetry 8.5.11 Film dosimetry 8.5.12 Luminescence dosimetry 8.5.13 Thermoluminescence 8.5.14 Optically stimulated luminescence 8.5.15 Semiconductor dosimetry 8.5.16 Physical and clinical dosimetry in radiotherapy 8.5.17 Physical dosimetry 8.5.18 Clinical dosimetry References Chapter 9 - Role of carbon ion beam radiotherapy for cancer treatment 9.1 Introduction 9.2 Radiation therapy for the treatment of cancer 9.2.1 Gamma ray therapy 9.2.2 Proton therapy 9.2.3 Ion beam therapy 9.3 Role of carbon ion beam therapy 9.4 Development of TLD materials for carbon ion beam therapy 9.4.1 Lithium-based phosphors 9.4.2 Calcium-based phosphors 9.4.3 Some other phosphors 9.5 Conclusion References Section 2 - Nanotherapeutics Chapter 10 - Nanomaterials physics: A critical review 10.1 Introduction 10.2 Fundamental concepts of nanomaterial physics 10.2.1 Structure sensitive and structure insensitive properties 10.2.2 Phases and their distribution 10.2.3 Defects in body nanomaterials 10.3 Properties of materials 10.3.1 Factors affecting properties of a material 10.3.1.1 Thermal properties 10.3.1.2 Mechanical properties 10.3.1.3 Optical properties 10.3.1.4 Electrical properties 10.3.1.5 Magnetic properties of nanomaterials 10.4 Rationale of nanoparticle physics with diverse functions involving nanomaterials 10.5 Self-assembly of nanostructures 10.6 Clinical applications of nanomaterials physics 10.6.1 Applications of nanomaterials physics in cancer 10.7 Conclusion: Nanotechnology, physics, and clinical outcome Acknowledgments References Chapter 11 - Nanotherapeutic systems for drug delivery to brain tumors 11.1 Introduction 11.2 An overview of brain tumors 11.2.1 Malignant brain tumors 11.2.2 Benign brain tumors 11.3 Barriers and challenges in the treatment of brain cancer 11.3.1 BBB as a main hurdle 11.3.2 Chemoresistance and efflux 11.3.3 Tumor microenvironment (TME) dynamics and lack of brain tumor classification based on genetics 11.3.4 Resistance due to cancer stem cells (CSCs) of gliomas and GBM 11.3.5 Lack of proper brain cancer mimicking models 11.4 Conventional vs nanomedicines in drug delivery for brain cancers 11.5 Approaches and mechanisms of nanocarriers for chemotherapeutic drug delivery to brain tumors 11.5.1 Passive targeting 11.5.2 Active targeting 11.5.2.1 Absorptive-mediated transcytosis (AMT) 11.5.2.2 Transporter- or carrier-mediated transcytosis (TMT/CMT) 11.5.2.3 Receptor-mediated endocytosis (RME) 11.5.2.4 Peptide conjugated 11.5.2.5 Small molecule ligand mediated 11.5.2.6 Oligonucleotide (aptamer) mediated 11.5.2.7 Cytokine-targeted nanocarriers 11.5.2.8 Cancer stem cells (CSCs) targeted nanoparticles 11.5.2.9 Dual-targeted/multifunctional nanocarriers 11.5.3 Stimuli responsive nanocarriers systems 11.5.3.1 Photosensitive (physical) drug delivery systems 11.5.3.2 pH sensitive (chemical) drug delivery systems 11.5.3.3 Redox-sensitive nanocarriers 11.6 Types of nanotherapeutic platforms for drug delivery to treat brain cancer 11.6.1 Inorganic (metallic) nanoparticles 11.6.1.1 Gold nanoparticles 11.6.1.2 Carbon nanotubes and nanodots 11.6.1.3 Quantum dots 11.6.1.4 Mesoporous silica nanoparticles (MSNs) 11.6.1.5 Superparamagnetic iron oxide nanoparticles (SPION) 11.6.1.6 Zinc oxide NPs 11.6.2 Lipid-based and polymeric nanoparticles 11.6.2.1 Liposomes 11.6.2.2 Polymeric micelles 11.6.2.3 Nanoliposomes 11.6.2.4 Dendrimers 11.7 Novel therapies to treat brain cancers 11.7.1 Artificial intelligence (AI)-enabled nanocarriers for oncotherapy 11.7.2 Gene-based nanotherapy 11.7.3 CRISPR/Cas 9-associated brain tumor therapy 11.7.4 Nose to brain drug delivery 11.8 Clinical translation of nanotherapeutic systems for brain cancers: From bench to bedside 11.9 Conclusion and future prospects References Chapter 12 - Progress in nanotechnology-based targeted cancer treatment 12.1 Introduction 12.2 Tumor microenvironment: Comparison with normal cells 12.2.1 Angiogenesis and endothelial permeability in cancer 12.2.2 Microenvironment pH 12.2.3 Microenvironment temperature 12.3 Nanotechnology-based diagnosis of cancer 12.4 Nanotechnology-based drug targeting strategies in cancer 12.4.1 Passive targeting 12.4.2 Active targeting 12.4.2.1 Tumor cell targeting 12.4.2.2 Tumoral endothelium targeting 12.4.3 Physical targeting 12.5 Progress in nanotherapeutics for treating breast and lung cancer 12.5.1 Breast cancer 12.5.2 Lung cancer 12.6 Future of nanotechnology in cancer treatment 12.7 Conclusion References Chapter 13 - Nanotherapeutics for colon cancer 13.1 Introduction 13.1.1 Anatomy 13.1.2 Pathogenesis and molecular pathways for CRC 13.1.3 Risk factors 13.1.4 Stages of CRC 13.1.5 Signs and symptoms 13.2 Diagnosis 13.2.1 Endoscopy 13.2.2 Imaging 13.2.3 Laboratory 13.2.4 Pathology 13.3 Current therapies 13.3.1 Conventional treatment strategies 13.3.1.1 Polypectomy and surgery 13.3.1.2 Radiation therapy 13.3.1.3 Chemotherapy 13.3.2 Targeted therapy 13.3.2.1 Immunotherapy 13.3.2.2 Limitations of immunotherapy 13.3.3 Targeted therapies using nanocarriers 13.4 Nanodrug delivery in cancer therapy 13.4.1 Polymers used in formulations of NPs 13.5 Polymeric nanoparticles (PNPs) 13.5.1 Lipid-based nanoparticles 13.5.2 Superparamagnetic iron oxide nanoparticles (SPIONs) 13.5.3 Gold nanoparticles (AuNPs) 13.5.4 Enteric-coated nanoparticles 13.6 Conclusion References Chapter 14 - Nanoparticles for the targeted drug delivery in lung cancer 14.1 Introduction 14.1.1 Stages of LC 14.1.2 Current treatment strategies on LC 14.1.3 Novel strategies for LC treatment by pulmonary route of administration 14.1.4 Pulmonary physiology and drug absorption 14.1.5 Role of nanoparticulate technology in the diagnosis and treatment of LC 14.1.5.1 Conventional method of LC diagnosis 14.1.6 Nanocarriers used for the diagnosis of lung diseases 14.2 Nanocarriers in LC treatment 14.2.1 Solid–lipid nanocarriers 14.2.2 Polymeric nanocarriers 14.2.3 Nanoemulsions as potential carrier in LC 14.2.4 Metal-based NPs 14.2.5 Dendrimers-based drug delivery 14.2.6 Target-mediated targeted therapy 14.2.7 Quantum dots (QDs) as a drug delivery system 14.2.8 Bio-NPs for LC 14.2.9 Hydrogel-based drug delivery for pulmonary cancer 14.2.10 Inhalation-based nanomedicine for pulmonary cancer 14.3 Marketed formulation 14.4 Toxicity issues of inhaled NPS 14.5 Conclusion References Chapter 15 - Role of nanocarriers for the effective delivery of anti-HIV drugs 15.1 Introduction 15.1.1 HIV life cycle and pathogenesis 15.1.1.1 Viral attachment and binding 15.1.1.2 Reverse transcription 15.1.1.3 Transcription 15.1.1.4 Translation and assembly 15.1.1.5 Budding 15.1.2 Pathophysiology 15.2 Conventional antiretroviral therapy 15.3 Types of nanocarriers for antiretroviral drugs delivery 15.3.1 Pure drug nanoparticles 15.3.2 Polymeric nanoparticles 15.3.3 Dendrimers 15.3.4 Polymeric micelles 15.3.5 Liposomes 15.3.6 Solid lipid nanoparticles 15.4 Nanaotechnological approaches for antiretroviral therapy 15.4.1 Immunotherapy for antiretroviral 15.4.2 Gene therapy 15.4.3 Vaccines 15.5 Nanotechnology for improving latency reservoir 15.6 Conclusion References Chapter 16 - Drug delivery systems for rheumatoid arthritis treatment 16.1 Introduction 16.1.1 Stages of rheumatoid arthritis 16.1.2 Causes of RA 16.1.3 Symptoms of RA 16.1.4 Pathology of rheumatoid arthritis 16.2 Management of rheumatoid arthritis 16.3 Targeted delivery strategies to inflamed synovium 16.4 Passive targeting 16.4.1 Enhanced permeability and retention (EPR) effect 16.4.2 Hypoxia and acidosis 16.4.3 Stimuli responsive drug delivery 16.4.4 Angiogenesis 16.5 Active targeting 16.6 Factors for the selection of delivery system 16.6.1 Carrier type 16.6.2 Particle size 16.6.3 Shape 16.6.4 Surface modifications 16.6.5 Prolonged circulation time 16.6.6 Strategies for active targeting 16.6.6.1 Folate receptor (FR) 16.6.6.2 CD44 16.6.6.3 Antiangiogenesis 16.6.6.4 Integrins 16.6.6.5 Vasoactive intestinal peptide (VIP) 16.6.6.6 E-selectin 16.7 Drug delivery vehicles for rheumatoid arthritis 16.7.1 Liposomes 16.7.2 Dendrimers 16.7.3 Nanoparticles 16.7.4 Polymeric micro- and nanoparticles 16.7.5 Macromolecules and the enhanced permeability and retention effect 16.7.6 Arthritis-specific antigens 16.7.7 The complement system 16.7.8 Specific surface receptors 16.7.9 Monoclonal antibodies 16.7.10 mAbs targeted against B cells 16.7.11 mAbs directed against IL-6function 16.7.12 mAb directed against NFKB ligand 16.8 Conclusion References Chapter 17 - Peptide functionalized nanomaterials as microbial sensors 17.1 Introduction 17.2 Conventional techniques for microorganism detection 17.2.1 Pure culture-based protocols 17.2.1.1 Selective approach 17.2.1.2 Enrichment media 17.2.1.3 Selective media 17.2.1.4 Differential media 17.2.2 Immunological techniques 17.2.2.1 Enzyme-linked immunosorbent assay 17.2.3 Nucleic acid-based assays 17.3 Principle behind using biosensors for microorganism detection 17.4 Commonly used biosensing recognition elements 17.4.1 Antibodies as biosensing recognition elements 17.4.2 Aptamers as biosensing recognition elements 17.4.3 Bacteriophages as biosensing recognition elements 17.4.4 Carbohydrates as biosensing recognition elements 17.4.5 Peptides as biosensing recognition elements 17.5 Advantages and challenges of using peptide-based detection of microorganisms 17.6 Properties of nanomaterials making them suitable for construction of microbial sensors 17.6.1 Carbon-based nanoparticles 17.6.2 Metallic nanoparticles 17.6.3 Magnetic nanoparticles 17.6.4 Quantum dots 17.7 Techniques enabling microorganism detection 17.7.1 Colorimetric detection 17.7.2 Fluorescence-based detection 17.7.3 Microscopic techniques 17.7.4 Spectroscopic detection 17.7.4.1 Fourier transform infrared spectroscopy 17.7.4.2 Surface-enhanced Raman spectroscopy 17.8 Recent advances in on-site detection of microorganisms using peptide functionalized nanosensors 17.8.1 Bacteria detection 17.8.2 Detection of fungal spores 17.8.3 Virus detection 17.9 Conclusion and future perspectives References Chapter 18 - Theranostic nanoagents: Future of personalized nanomedicine 18.1 Introduction 18.1.1 Theranostics 18.1.2 Nanoagents 18.1.3 Nanotheranostics 18.2 Recent approaches versus theranostic nanoagents 18.2.1 Contemporary treatment methods and their drawbacks 18.3 Nanotheranostics and neurological disorders 18.3.1 Blood–brain barrier 18.3.2 Theranostic nanoparticles employed in neurology 18.3.3 Theranostic applications of nanosystems in neurological disorders 18.3.3.1 Glioma (brain tumors) 18.3.3.2 Alzheimer’s disease (AD) 18.3.3.3 Parkinson’s disease (PD) 18.3.3.4 Neurovascular diseases 18.4 Nanotheranostics and rheumatoid arthritis 18.4.1 Rheumatoid arthritis (RA) 18.4.2 Current treatments and their drawbacks 18.4.3 Nanotheranostic approach for rheumatoid arthritis 18.4.3.1 Bioimaging and photodynamic therapy through nanocomposites in RA 18.4.3.2 Magnetic-targeted chemo-photothermal nanotherapy in RA 18.4.3.3 Combined photodynamic and photothermal therapy in RA 18.4.3.4 Nanotheranostic approach for macrophage detection and therapy in RA 18.5 Nanoparticle-based theranostic agents 18.5.1 Iron oxide nanoparticle-based theranostic agents 18.5.2 Quantum dot-based theranostic agents 18.5.3 Gold nanoparticle-based theranostic agents 18.5.4 Carbon nanotube-based theranostic agents 18.5.5 Silica nanoparticle-based theranostic agents 18.6 Theranostic nanoagents: future of nanomedicine 18.7 Conclusion References Chapter 19 - Improving the functionality of a nanomaterial by biological probes 19.1 Introduction to nanomaterials 19.2 Classifications of nanoparticles 19.2.1 Metallic nanoparticles 19.2.1.1 Gold and silver nanoparticles 19.2.1.2 Palladium and platinum nanoparticles 19.2.1.3 Noble metal nanoclusters 19.2.2 Semiconductor quantum dots 19.2.3 Metal oxide nanoparticles 19.2.3.1 Iron oxide 19.2.3.2 Silicon dioxide 19.2.3.3 Titanium dioxide 19.2.4 Organic nanoparticles 19.2.4.1 Carbon allotropes 19.2.4.2 Biopolymeric nanomaterials 19.2.5 Upconversion nanoparticles 19.3 Common conjugation approaches for biomolecule functionalized nanomaterials 19.3.1 Conjugation approaches 19.3.1.1 Encapsulation 19.3.1.2 Noncovalent attachment 19.3.1.3 Covalent and dative chemistry 19.3.2 Functionalization of nanoparticles 19.3.2.1 Small ligands 19.3.2.2 Polymers 19.3.2.3 Biological probes/biomolecules 19.3.2.3.1 DNAzyme and DNA molecule functionalized nanoparticles 19.3.2.3.2 Protein and antibody functionalized nanoparticles 19.3.2.3.3 Glucosamine functionalized nanoparticles 19.3.2.3.4 Peptide/peptidomimetics functionalized nanoparticles 19.4 Basic chemistries behind conjugation approaches 19.4.1 Functional groups and conjugation reactions 19.4.2 Polyhistidine–nitrilotriacetic acid chelation 19.4.3 Biotin–avidin chemistry 19.5 Applications 19.5.1 Detection of DNA, protein, and metal ions 19.5.2 Detection of human pathogens 19.5.3 Enhancement of antibacterial and anti-inflammatory activity 19.5.4 Theranostics 19.6 Conclusion and future perspective References Chapter 20 - Nanostructures for the efficient oral delivery of chemotherapeutic agents 20.1 Introduction 20.1.1 Limitations of conventional chemotherapy 20.1.2 Edges of nanoparticles over the other delivery system 20.1.3 Components of nanoparticles as a targeting system 20.1.4 Characteristics features of ideal targeting moieties 20.1.5 The potential of nanocarriers as drug delivery systems 20.1.6 Nanoparticle properties 20.1.7 Cancer therapy: Selective targeting of tissues by nanotechnology 20.2 Nanodrug carriers 20.2.1 Classification of nanoparticles as drug carriers 20.2.2 Micelles 20.2.3 Solid-lipid nanoparticles (SLNs) 20.2.4 Cubosomes 20.2.5 Drug-polymer conjugates 20.2.6 Antibody-drug conjugates 20.2.7 Inorganic nanoparticles 20.2.8 Carbon nanotubes (CNTs) 20.2.9 Gold nanoparticles (GNPs) 20.2.10 Porous silicon particles (PSiPs) 20.2.11 Quantum dots (QDs) 20.2.12 Iron oxide nanoparticles (IONPs) 20.2.13 IONPs References Chapter 21 - Photo-triggered theranostics nanomaterials: Development and challenges in cancer treatment 21.1 Introduction of nanomaterials in phototherapeutics 21.2 Types of nanomaterials 21.2.1 Magnetic nanoparticles 21.2.2 Properties and materials for preparation of photo-based nanomaterials 21.2.3 Gold-based nanoparticles 21.2.4 Carbon nanotubes 21.3 Polymeric nanocarriers for photosensitizer/dye encapsulation 21.4 Nanoconstructs for photodynamic therapy 21.5 Photo-triggered theranostic nanocarriers 21.6 Approaches to measure drug release through theranostic nanomedicine 21.6.1 Silicon photonic crystals with pores 21.6.2 Fluorescent nanoparticles 21.6.3 Upconversion nanoparticles 21.6.4 Radioluminescent nanoparticles 21.7 Magnetic resonance imaging for monitoring release of drug 21.8 Photo-triggered theranostics nanomaterials: Principle and applications 21.8.1 Applications of photo-triggered theranostics nanomaterials in cancer treatments 21.8.2 Therapeutic applications of photo-based theranostic nanoparticles 21.9 Opportunities and limitations of nanomaterials 21.10 Preclinical challenges 21.11 Future aspects of nanomaterials in the therapeutics References Chapter 22 - Nanocrystals in the drug delivery system 22.1 Introduction to nanocrystals and nanosuspension 22.1.1 Properties of nanocrystals (Colombo, 2017; Mitri et al., 2011) 22.1.2 Nanocrystals and bioavailability 22.1.3 Various methods of characterization of nanocrystals formulations (doi:10.3390/molecules201219851) 22.2 Production methods and technology of nanocrystals 22.2.1 Top down technology 22.2.1.1 Homogenization 22.2.2 Bottom up technology 22.2.3 Top down and bottom up technology 22.2.4 Spray drying 22.3 Advantages and Disadvantages of nanocrystals 22.3.1 Potential advantages and disadvantages of nanocrystals 22.3.2 Disadvantages of nanocrystals 22.4 Pharmaceutical Nanocrystals of API 22.4.1 Case studies of drug loaded in the nanocrystals 22.4.2 Application of nanocrystals-loaded carrier 22.4.2.1 Nanocrystals in oral delivery system 22.4.2.2 Parenteral administration of drug nanocrystals 22.4.2.3 Drug nanocrystals for pulmonary drug delivery 22.4.2.4 Drug nanocrystals for ophthalmic drug delivery 22.4.2.4a Drug nanocrystals for dermal drug delivery 22.4.2.5 Drug nanocrystals for targeted drug delivery 22.5 Conclusion References Index Back cover