ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Photophysics and Nanophysics in Therapeutics

دانلود کتاب فتوفیزیک و نانوفیزیک در درمان

Photophysics and Nanophysics in Therapeutics

مشخصات کتاب

Photophysics and Nanophysics in Therapeutics

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0323898394, 9780323898393 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 476
[478] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 76 Mb 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Photophysics and Nanophysics in Therapeutics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فتوفیزیک و نانوفیزیک در درمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فتوفیزیک و نانوفیزیک در درمان



فتوفیزیک و نانوفیزیک در درمان به بررسی آخرین پیشرفت‌ها و کاربردهای فتوتراپی و نانوتراپی می‌پردازد که کاربرد نور، تابش و نانوتکنولوژی در درمان را به همراه اصول اساسی فیزیک در درمان پوشش می‌دهد. این مناطق این کتاب که از دو بخش تشکیل شده است، ابتدا طیف وسیعی از فصول را در بر می گیرد که فتوتراپی را پوشش می دهد، از مبانی درمان فتودینامیک (PDT) تا کاربردهایی مانند درمان سرطان و پیشرفت در رادیوتراپی، فیزیک کاربردی در درمان رادیوتراپی سرطان، و نقش پرتو یون کربن. درمان. بخش‌های دیگر نانودرمانی، کاربردها و چالش‌های بالقوه، و نانوتراپی برای دارورسانی به مغز را پوشش می‌دهد.

فصل‌های پایانی به نانوتکنولوژی در تشخیص و درمان سرطان‌ها، نقش نانوحامل‌ها می‌پردازد. برای درمان اچ‌آی‌وی، نانوذرات برای درمان آرتریت روماتوئید، نانومواد فعال‌شده با پپتید به‌عنوان حسگرهای میکروبی، و نانوعامل‌های ترانوستیک.


توضیحاتی درمورد کتاب به خارجی

Photophysics and Nanophysics in Therapeutics explores the latest advances and applications of phototherapy and nanotherapy, covering the application of light, radiation, and nanotechnology in therapeutics, along with the fundamental principles of physics in these areas. Consisting of two parts, the book first features a range of chapters covering phototherapeutics, from the fundamentals of photodynamic therapy (PDT) to applications such as cancer treatment and advances in radiotherapy, applied physics in cancer radiotherapy treatment, and the role of carbon ion beam therapy. Other sections cover nanotherapeutics, potential applications and challenges, and nanotherapy for drug delivery to the brain.

Final chapters delve into nanotechnology in the diagnosis and treatment of cancers, the role of nanocarriers for HIV treatment, nanoparticles for rheumatoid arthritis treatment, peptide functionalized nanomaterials as microbial sensors, and theranostic nanoagents.



فهرست مطالب

Front cover
	Half title
	Full title
	Copyright
Contents
Contributors
Section 1 - Phototherapeutics
Chapter 1 - Phototherapy: A critical review
	1.1 Introduction
	1.2 Background
		1.2.1 Historical perspective of phototherapy
			1.2.1.1 Progress in the twentieth century
		1.2.2 Overview on various types of phototherapies
			1.2.2.1 UVB therapy
			1.2.2.2 UVA therapy
			1.2.2.3 PUVA therapy
			1.2.2.4 Home phototherapy
	1.3 Various light sources and methods of phototherapy
		1.3.1 Fluorescent tubes
		1.3.2 Halogen spotlights
		1.3.3 Fiberoptic blankets
		1.3.4 Light-emitting diodes
		1.3.5 Filtered sunlight
	1.4 Applications and limitations of phototherapy
		1.4.1 Application in neonatal jaundice
		1.4.2 Application for morphea, scleroderma, and other sclerosing skin conditions
		1.4.3 Application for cancer
		1.4.4 Limitations of home phototherapy and sunlight
	1.5 Recent developments and future scopes
		1.5.1 The immunoregulatory effects of phototherapy: Possible pathways
		1.5.2 Handheld phototherapy: Targeting difficult-to-treat psoriasis in the office and at home
		1.5.3 The excimer laser: A potential new indication and a novel dosimetry protocol
		1.5.4 Phototherapy and biologic agents: Combination therapy for recalcitrant psoriasis
		1.5.5 Future scope
	References
Chapter 2 - Phototherapy for skin diseases
	2.1 Introduction
		2.1.1 The epidermis
			2.1.1.1 Dermis
		2.1.2 The hypodermis
	2.2 Major functions of the skin
	2.3 Skin diseases and their etiology
	2.4 Bacterial skin diseases
	2.5 Fungal skin diseases
	2.6 Viral skin diseases
	2.7 Tropical ulcers
	2.8 HIV related skin diseases
	2.9 Pigmentation disorders
	2.10 Parasitic infections
	2.11 Tumors and cancers
	2.12 Trauma
	2.13 Skin tests
	2.14 Heliotherapy
	2.15 Naturopathy modalities on inflammation and immunity
	2.16 Phototherapy for skin diseases
	2.17 Methods
		2.17.1 UVB radiations
		2.17.2 UVA radiation
		2.17.3 PUVA
		2.17.4 Diseases and their treatment using phototherapy
			2.17.4.1 Vitiligo
			2.17.4.2 Atopic dermatitis
			2.17.4.3 Psoriasis
			2.17.4.4 Impetigo
			2.17.4.5 Folliculitis
			2.17.4.6 Acne vulgaris
			2.17.4.7 Fungal skin diseases
			2.17.4.8 Lymphoma
			2.17.4.9 Scleroderma
		2.17.5 Limitations of phototherapy for skin diseases
		2.17.6 Side effects of phototherapy
		2.17.7 Recent development and future scope
	2.18 Concluding remark
	Abbreviations
	References
Chapter 3 - Phototherapy: The novel emerging treatment for cancer
	3.1 Introduction
	3.2 Photophysics and photochemistry
		3.2.1 Type I mechanism of photodynamic reaction
		3.2.2 Type II mechanism of photodynamic reaction
	3.3 Photodynamic targets at the molecular level
		3.3.1 Proteins
		3.3.2 Photodynamic therapy-induced lipid peroxidation
		3.3.3 Photosensitized modification of nucleic acids
	3.4 Light source
		3.4.1 Near infrared (NIR) light
		3.4.2 X-ray
		3.4.3 Interstitial light
		3.4.4 Internal light
	3.5 Changes in cell signaling after photodynamic therapy
		3.5.1 Calcium
		3.5.2 Lipid metabolism
		3.5.3 Tyrosine kinases
		3.5.4 Transcription factors
		3.5.5 Cellular adhesion
		3.5.6 Cytokines
		3.5.7 Stress response
		3.5.8 Hypoxia and angiogenesis
	3.6 Method of excitation for photosensitizing agents
		3.6.1 Intermolecular chemically induced electronic excitation
		3.6.2 Resonance energy transfer excitation
		3.6.3 Two-stage photosensitizer excitation/excitation by radiation energy transfer intermediary
		3.6.4 Cherenkov radiation energy transfer
	3.7 Photodynamic therapy modifications
		3.7.1 Nanotechnology on photodynamic therapy
		3.7.2 Application of liposomes and lipoproteins
		3.7.3 Photodynamic therapy supported by electroporation
	3.8 Conclusion
	Acknowledgment
	Statement of informed consent
	Conflict of interest
	References
Chapter 4 - Fundamentals of photodynamic therapy
	4.1 Introduction
	4.2 Basic concept of photodynamic therapy
		4.2.1 Photosensitizers
		4.2.1.1 Porphyrin-based photosensitizers
			4.2.1.1.1 First generation photosensitizers
				4.2.1.1.2 Second generation photosensitizers
			4.2.1.1.3 Third generation photosensitizers
			4.2.1.2 Nonporphyrin-based photosensitizers
	4.3 Working mechanism
		4.3.1 Mechanism of cell death following photodynamic therapy
			4.3.1.1 Apoptosis
			4.3.1.2 Necrosis
			4.3.1.3 Autophagy
	4.4 Advantages and disadvantages of photodynamic therapy
		4.4.1 Apoptosis in photodynamic therapy
		4.4.2 Immunological effects of photodynamic therapy
		4.4.3 Biological effects of photodynamic therapy
		4.4.4 Summarizing the advantages and disadvantages of photodynamic therapy
	4.5 Essential wavelength region in photodynamic therapy
	4.6 Recent developments in photodynamic therapy
		4.6.1 Metal-organic frameworks
		4.6.2 Photoactive materials for wavelength response
		4.6.3 Photodynamic therapy and hypoxia-controlled nanomedicine
	4.7 Future scopes and perspectives
	References
Chapter 5 - Photodynamic therapy for cancer treatment
	5.1 Introduction
	5.2 Background of photodynamic therapy
		5.2.1 Origin of photodynamic therapy
		5.2.2 Mechanism of photodynamic therapy
		5.2.3 Working principle of photodynamic therapy
		5.2.4 Mechanism of photodynamic therapy in treatment of cancer
			5.2.4.1 Tumor cell destruction
			5.2.4.2 Vascular events
			5.2.4.3 Immune system mediated photodynamic therapy
	5.3 Novel strategies in photodynamic therapy
		5.3.1 Metronomic photodynamic therapy
		5.3.2 Photodynamic therapy molecular beacons
		5.3.3 Nanotechnology in photodynamic therapy
	5.4 Role of photosensitizing agents in photodynamic therapy
	5.5 Application of photodynamic therapy in treatment of various cancers
		5.5.1 Skin tumors
		5.5.2 Head and neck tumors
		5.5.3 Digestive system tumors
		5.5.4 Urinary system tumors
			5.5.4.1 Prostate cancer
			5.5.4.2 Bladder cancer
		5.5.5 Brain tumors
		5.5.6 Nonsmall cell lung cancer and mesothelioma
	5.6 Recent developments, future scope, and challenges
	5.7 Conclusion
	Acknowledgment
	References
Chapter 6 - Photodiagnostic techniques
	6.1 Introduction
		6.1.1 Ionizing radiations
	6.2 Fundamentals of light used in diagnostic techniques
		6.2.1 X-ray production
		6.2.2 X-ray beam intensity
		6.2.3 Target material
		6.2.4 Voltage applied
		6.2.5 X-ray tube current
	6.3 Various photo diagnostic techniques
		6.3.1 Plain radiography and digital radiography
		6.3.2 Computed tomography
			6.3.2.1 Computed tomography perfusion imaging
			6.3.2.2 Cone beam computed tomography
			6.3.2.3 Positron emission tomography in nuclear medicine
		6.3.3 Fluoroscopy
		6.3.4 Digital subtraction angiography
		6.3.5 Digital radiography and picture archival and communication system
		6.3.6 Dual energy X-ray absorptiometry
		6.3.7 Dual energy computed tomography
		6.3.8 Orthopantomography
	6.4 Physics of photodiagnostic techniques
		6.4.1 Interaction of radiation with matter
			6.4.1.1 Attenuation
			6.4.1.2 Rayleigh or coherent scattering
			6.4.1.3 Compton scattering
			6.4.1.4 Photoelectric effect
			6.4.1.5 Pair production
		6.4.2 Importance of interaction in tissue
			6.4.2.1 Differential absorption
			6.4.2.2 Atomic number
			6.4.2.3 Mass density
			6.4.2.4 Photon energy
		6.4.3 Picture archiving and communication system
			6.4.3.1 Fluoroscopy
			6.4.3.2 Orthopantomography
			6.4.3.3 Dual energy compute tomography
			6.4.3.4 Prospective techniques
			6.4.3.5 Retrospective techniques
	6.5 Opportunities, challenges, and limitations of photodiagnostic techniques
	References
Chapter 7 - The role of physics in modern radiotherapy: Current advances and developments
	7.1 Introduction
	7.2 Role of radiotherapy in cancer treatment
		7.2.1 What is radiotherapy and how it works?
		7.2.2 Types of radiotherapy
			7.2.2.1 External beam radiation therapy for cancer
				7.2.2.1.1 Types of beams used in radiation therapy
		7.2.3 Types of external beam radiation therapy
			7.2.3.1 Three dimensional conformal radiation therapy
			7.2.3.2 Intensity-modulated radiation therapy
			7.2.3.3 Image-guided radiation therapy (IGRT)
			7.2.3.4 Tomotherapy
			7.2.3.5 Stereotactic radiosurgery
			7.2.3.6 Stereotactic body radiation therapy
			7.2.3.7 Brachytherapy
			7.2.3.8 Types of brachytherapy
		7.2.4 General indications for the radiotherapy
		7.2.5 Intent of radiotherapy treatment
		7.2.6 Types of cancer treated using radiotherapy
		7.2.7 The role of radiotherapy in cancer control
	7.3 Development of radiation physics
		7.3.1 History
		7.3.2 External radiotherapy
		7.3.3 Clinical radiation generators
			7.3.3.1 Kilovoltage units
				7.3.3.1.1 Grenz-ray therapy
				7.3.3.1.2 Contact therapy
				7.3.3.1.3 Superficial therapy
				7.3.3.1.4 Orthovoltage therapy or deep therapy
				7.3.3.1.5 Supervoltage therapy
				7.3.3.1.6 Megavoltage therapy
		7.3.4 Dose planning
	7.4 Recent advancement in radiotherapy
		7.4.1 Instigation
		7.4.2 Radiotherapy principle and mechanism
		7.4.3 Technology development
			7.4.3.1 Three-dimensional conformal radiotherapy
			7.4.3.2 Intensity modulated radiotherapy
				7.4.3.2.1 Segmental IMRT
				7.4.3.2.2 Dynamic IMRT
		7.4.4 Image-guided radiotherapy treatment
			7.4.4.1 Intertreatment motion
			7.4.4.2 Intratreatment motion and their detection
		7.4.5 Adaptive radiotherapy
		7.4.6 Stereotactic radiosurgery and radiotherapy
		7.4.7 Particle therapy
		7.4.8 Summary
	7.5 Radiosurgery for noncancerous tumor and diseases
		7.5.1 Introduction
		7.5.2 History
		7.5.3 Treatment
		7.5.4 Systems overview
	7.6 Summary and conclusion
	References
Chapter 8 - Physics in treatment of cancer radiotherapy
	8.1 Introduction
		8.1.1 Physics of radiotherapy
		8.1.2 Structure of matter
		8.1.3 Atom
		8.1.4 Nucleus
		8.1.5 Types of radiation
		8.1.6 X-rays
		8.1.7 Gamma rays
		8.1.8 Particulate radiation
		8.1.9 Interaction of radiation with matter
		8.1.10 Interaction of photon beam (X-rays or γ rays)
		8.1.11 Coherent scattering
		8.1.12 Photoelectric effect
		8.1.13 Compton effects
		8.1.14 Pair production
		8.1.15 Photodisintegration
		8.1.16 Interaction of charged particle
		8.1.17 Electron and electron interaction
		8.1.18 Electron and nucleus interaction
		8.1.19 Interaction of heavy charged particle
		8.1.20 Biological effect of radiation
		8.1.21 Linear energy transfer
		8.1.22 Relative biological effectiveness
	8.2 Principle of radiotherapy
		8.2.1 Radiotherapy facility
	8.3 Traditional facility in treatment of radiotherapy
		8.3.1 Superficial therapy
		8.3.2 Orthovoltage therapy or deep therapy
		8.3.3 Supervoltage therapy machines
		8.3.4 Cobalt-60 teletherapy unit
		8.3.5 Betatron and microtron
		8.3.6 Advance facility in treatment of radiotherapy
		8.3.7 Linear accelerator (Linac)
		8.3.8 Tomotherapy
		8.3.9 CyberKnife
		8.3.10 Proton and light ion therapy
		8.3.11 Cyclotron
		8.3.12 Synchrotron and synchrocyclotron
		8.3.13 Add-on facility in treatment of radiotherapy
		8.3.14 Conventional simulator
		8.3.15 CT simulator
		8.3.16 Commissioning of radiotherapy facility and quality assurance
		8.3.17 Technique of radiotherapy
		8.3.18 External beam radiation therapy
		8.3.19 Conventional treatment techniques in EBRT
		8.3.20 Three-dimensional conformal radiation therapy
		8.3.21 Intensity modulated radiation therapy
		8.3.22 Rotational therapy or volumetric modulated arc therapy (VMAT)
		8.3.23 Stereotactic radiosurgery and stereotactic radiotherapy
		8.3.24 Image-guided radiotherapy
		8.3.25 Internal beam radiation therapy or brachytherapy
		8.3.26 Process and treatment of radiotherapy
	8.4 Patient preparation and simulation
	8.5 Target delineation and treatment planning
		8.5.1 Treatment verification and treatment delivery
		8.5.2 Dosimetry in radiation therapy
		8.5.3 Activity
		8.5.4 Particle fluence
		8.5.5 Energy fluence
		8.5.6 Exposure
		8.5.7 Kerma
		8.5.8 Absorbed dose
		8.5.9 Methods of radiation dosimetry and dosimeters in radiation therapy
		8.5.10 Ionization chamber dosimetry
		8.5.11 Film dosimetry
		8.5.12 Luminescence dosimetry
		8.5.13 Thermoluminescence
		8.5.14 Optically stimulated luminescence
		8.5.15 Semiconductor dosimetry
		8.5.16 Physical and clinical dosimetry in radiotherapy
		8.5.17 Physical dosimetry
		8.5.18 Clinical dosimetry
	References
Chapter 9 - Role of carbon ion beam radiotherapy for cancer treatment
	9.1 Introduction
	9.2 Radiation therapy for the treatment of cancer
		9.2.1 Gamma ray therapy
		9.2.2 Proton therapy
		9.2.3 Ion beam therapy
	9.3 Role of carbon ion beam therapy
	9.4 Development of TLD materials for carbon ion beam therapy
		9.4.1 Lithium-based phosphors
		9.4.2 Calcium-based phosphors
		9.4.3 Some other phosphors
	9.5 Conclusion
	References
Section 2 - Nanotherapeutics
Chapter 10 - Nanomaterials physics: A critical review
	10.1 Introduction
	10.2 Fundamental concepts of nanomaterial physics
		10.2.1 Structure sensitive and structure insensitive properties
		10.2.2 Phases and their distribution
		10.2.3 Defects in body nanomaterials
	10.3 Properties of materials
		10.3.1 Factors affecting properties of a material
			10.3.1.1 Thermal properties
			10.3.1.2 Mechanical properties
			10.3.1.3 Optical properties
			10.3.1.4 Electrical properties
			10.3.1.5 Magnetic properties of nanomaterials
	10.4 Rationale of nanoparticle physics with diverse functions involving nanomaterials
	10.5 Self-assembly of nanostructures
	10.6 Clinical applications of nanomaterials physics
		10.6.1 Applications of nanomaterials physics in cancer
	10.7 Conclusion: Nanotechnology, physics, and clinical outcome
	Acknowledgments
	References
Chapter 11 - Nanotherapeutic systems for drug delivery to brain tumors
	11.1 Introduction
	11.2 An overview of brain tumors
		11.2.1 Malignant brain tumors
		11.2.2 Benign brain tumors
	11.3 Barriers and challenges in the treatment of brain cancer
		11.3.1 BBB as a main hurdle
		11.3.2 Chemoresistance and efflux
		11.3.3 Tumor microenvironment (TME) dynamics and lack of brain tumor classification based on genetics
		11.3.4 Resistance due to cancer stem cells (CSCs) of gliomas and GBM
		11.3.5 Lack of proper brain cancer mimicking models
	11.4 Conventional vs nanomedicines in drug delivery for brain cancers
	11.5 Approaches and mechanisms of nanocarriers for chemotherapeutic drug delivery to brain tumors
		11.5.1 Passive targeting
		11.5.2 Active targeting
			11.5.2.1 Absorptive-mediated transcytosis (AMT)
			11.5.2.2 Transporter- or carrier-mediated transcytosis (TMT/CMT)
			11.5.2.3 Receptor-mediated endocytosis (RME)
			11.5.2.4 Peptide conjugated
			11.5.2.5 Small molecule ligand mediated
			11.5.2.6 Oligonucleotide (aptamer) mediated
			11.5.2.7 Cytokine-targeted nanocarriers
			11.5.2.8 Cancer stem cells (CSCs) targeted nanoparticles
			11.5.2.9 Dual-targeted/multifunctional nanocarriers
		11.5.3 Stimuli responsive nanocarriers systems
			11.5.3.1 Photosensitive (physical) drug delivery systems
			11.5.3.2 pH sensitive (chemical) drug delivery systems
			11.5.3.3 Redox-sensitive nanocarriers
	11.6 Types of nanotherapeutic platforms for drug delivery to treat brain cancer
		11.6.1 Inorganic (metallic) nanoparticles
			11.6.1.1 Gold nanoparticles
			11.6.1.2 Carbon nanotubes and nanodots
			11.6.1.3 Quantum dots
			11.6.1.4 Mesoporous silica nanoparticles (MSNs)
			11.6.1.5 Superparamagnetic iron oxide nanoparticles (SPION)
			11.6.1.6 Zinc oxide NPs
		11.6.2 Lipid-based and polymeric nanoparticles
			11.6.2.1 Liposomes
			11.6.2.2 Polymeric micelles
			11.6.2.3 Nanoliposomes
			11.6.2.4 Dendrimers
	11.7 Novel therapies to treat brain cancers
		11.7.1 Artificial intelligence (AI)-enabled nanocarriers for oncotherapy
		11.7.2 Gene-based nanotherapy
		11.7.3 CRISPR/Cas 9-associated brain tumor therapy
		11.7.4 Nose to brain drug delivery
	11.8 Clinical translation of nanotherapeutic systems for brain cancers: From bench to bedside
	11.9 Conclusion and future prospects
	References
Chapter 12 - Progress in nanotechnology-based targeted cancer treatment
	12.1 Introduction
	12.2 Tumor microenvironment: Comparison with normal cells
		12.2.1 Angiogenesis and endothelial permeability in cancer
		12.2.2 Microenvironment pH
		12.2.3 Microenvironment temperature
	12.3 Nanotechnology-based diagnosis of cancer
	12.4 Nanotechnology-based drug targeting strategies in cancer
		12.4.1 Passive targeting
		12.4.2 Active targeting
			12.4.2.1 Tumor cell targeting
			12.4.2.2 Tumoral endothelium targeting
		12.4.3 Physical targeting
	12.5 Progress in nanotherapeutics for treating breast and lung cancer
		12.5.1 Breast cancer
		12.5.2 Lung cancer
	12.6 Future of nanotechnology in cancer treatment
	12.7 Conclusion
	References
Chapter 13 - Nanotherapeutics for colon cancer
	13.1 Introduction
		13.1.1 Anatomy
		13.1.2 Pathogenesis and molecular pathways for CRC
		13.1.3 Risk factors
		13.1.4 Stages of CRC
		13.1.5 Signs and symptoms
	13.2 Diagnosis
		13.2.1 Endoscopy
		13.2.2 Imaging
		13.2.3 Laboratory
		13.2.4 Pathology
	13.3 Current therapies
		13.3.1 Conventional treatment strategies
			13.3.1.1 Polypectomy and surgery
			13.3.1.2 Radiation therapy
			13.3.1.3 Chemotherapy
		13.3.2 Targeted therapy
			13.3.2.1 Immunotherapy
			13.3.2.2 Limitations of immunotherapy
		13.3.3 Targeted therapies using nanocarriers
	13.4 Nanodrug delivery in cancer therapy
		13.4.1 Polymers used in formulations of NPs
	13.5 Polymeric nanoparticles (PNPs)
		13.5.1 Lipid-based nanoparticles
		13.5.2 Superparamagnetic iron oxide nanoparticles (SPIONs)
		13.5.3 Gold nanoparticles (AuNPs)
		13.5.4 Enteric-coated nanoparticles
	13.6 Conclusion
	References
Chapter 14 - Nanoparticles for the targeted drug delivery in lung cancer
	14.1 Introduction
		14.1.1 Stages of LC
		14.1.2 Current treatment strategies on LC
		14.1.3 Novel strategies for LC treatment by pulmonary route of administration
		14.1.4 Pulmonary physiology and drug absorption
		14.1.5 Role of nanoparticulate technology in the diagnosis and treatment of LC
			14.1.5.1 Conventional method of LC diagnosis
		14.1.6 Nanocarriers used for the diagnosis of lung diseases
	14.2 Nanocarriers in LC treatment
		14.2.1 Solid–lipid nanocarriers
		14.2.2 Polymeric nanocarriers
		14.2.3 Nanoemulsions as potential carrier in LC
		14.2.4 Metal-based NPs
		14.2.5 Dendrimers-based drug delivery
		14.2.6 Target-mediated targeted therapy
		14.2.7 Quantum dots (QDs) as a drug delivery system
		14.2.8 Bio-NPs for LC
		14.2.9 Hydrogel-based drug delivery for pulmonary cancer
		14.2.10 Inhalation-based nanomedicine for pulmonary cancer
	14.3 Marketed formulation
	14.4 Toxicity issues of inhaled NPS
	14.5 Conclusion
	References
Chapter 15 - Role of nanocarriers for the effective delivery of anti-HIV drugs
	15.1 Introduction
		15.1.1 HIV life cycle and pathogenesis
			15.1.1.1 Viral attachment and binding
			15.1.1.2 Reverse transcription
			15.1.1.3 Transcription
			15.1.1.4 Translation and assembly
			15.1.1.5 Budding
		15.1.2 Pathophysiology
	15.2 Conventional antiretroviral therapy
	15.3 Types of nanocarriers for antiretroviral drugs delivery
		15.3.1 Pure drug nanoparticles
		15.3.2 Polymeric nanoparticles
		15.3.3 Dendrimers
		15.3.4 Polymeric micelles
		15.3.5 Liposomes
		15.3.6 Solid lipid nanoparticles
	15.4 Nanaotechnological approaches for antiretroviral therapy
		15.4.1 Immunotherapy for antiretroviral
		15.4.2 Gene therapy
		15.4.3 Vaccines
	15.5 Nanotechnology for improving latency reservoir
	15.6 Conclusion
	References
Chapter 16 - Drug delivery systems for rheumatoid arthritis treatment
	16.1 Introduction
		16.1.1 Stages of rheumatoid arthritis
		16.1.2 Causes of RA
		16.1.3 Symptoms of RA
		16.1.4 Pathology of rheumatoid arthritis
	16.2 Management of rheumatoid arthritis
	16.3 Targeted delivery strategies to inflamed synovium
	16.4 Passive targeting
		16.4.1 Enhanced permeability and retention (EPR) effect
		16.4.2 Hypoxia and acidosis
		16.4.3 Stimuli responsive drug delivery
		16.4.4 Angiogenesis
	16.5 Active targeting
	16.6 Factors for the selection of delivery system
		16.6.1 Carrier type
		16.6.2 Particle size
		16.6.3 Shape
		16.6.4 Surface modifications
		16.6.5 Prolonged circulation time
		16.6.6 Strategies for active targeting
			16.6.6.1 Folate receptor (FR)
			16.6.6.2 CD44
			16.6.6.3 Antiangiogenesis
			16.6.6.4 Integrins
			16.6.6.5 Vasoactive intestinal peptide (VIP)
			16.6.6.6 E-selectin
	16.7 Drug delivery vehicles for rheumatoid arthritis
		16.7.1 Liposomes
		16.7.2 Dendrimers
		16.7.3 Nanoparticles
		16.7.4 Polymeric micro- and nanoparticles
		16.7.5 Macromolecules and the enhanced permeability and retention effect
		16.7.6 Arthritis-specific antigens
		16.7.7 The complement system
		16.7.8 Specific surface receptors
		16.7.9 Monoclonal antibodies
		16.7.10 mAbs targeted against B cells
		16.7.11 mAbs directed against IL-6function
		16.7.12 mAb directed against NFKB ligand
	16.8 Conclusion
	References
Chapter 17 - Peptide functionalized nanomaterials as microbial sensors
	17.1 Introduction
	17.2 Conventional techniques for microorganism detection
		17.2.1 Pure culture-based protocols
			17.2.1.1 Selective approach
			17.2.1.2 Enrichment media
			17.2.1.3 Selective media
			17.2.1.4 Differential media
		17.2.2 Immunological techniques
			17.2.2.1 Enzyme-linked immunosorbent assay
		17.2.3 Nucleic acid-based assays
	17.3 Principle behind using biosensors for microorganism detection
	17.4 Commonly used biosensing recognition elements
		17.4.1 Antibodies as biosensing recognition elements
		17.4.2 Aptamers as biosensing recognition elements
		17.4.3 Bacteriophages as biosensing recognition elements
		17.4.4 Carbohydrates as biosensing recognition elements
		17.4.5 Peptides as biosensing recognition elements
	17.5 Advantages and challenges of using peptide-based detection of microorganisms
	17.6 Properties of nanomaterials making them suitable for construction of microbial sensors
		17.6.1 Carbon-based nanoparticles
		17.6.2 Metallic nanoparticles
		17.6.3 Magnetic nanoparticles
		17.6.4 Quantum dots
	17.7 Techniques enabling microorganism detection
		17.7.1 Colorimetric detection
		17.7.2 Fluorescence-based detection
		17.7.3 Microscopic techniques
		17.7.4 Spectroscopic detection
			17.7.4.1 Fourier transform infrared spectroscopy
			17.7.4.2 Surface-enhanced Raman spectroscopy
	17.8 Recent advances in on-site detection of microorganisms using peptide functionalized nanosensors
		17.8.1 Bacteria detection
		17.8.2 Detection of fungal spores
		17.8.3 Virus detection
	17.9 Conclusion and future perspectives
	References
Chapter 18 - Theranostic nanoagents: Future of personalized nanomedicine
	18.1 Introduction
		18.1.1 Theranostics
		18.1.2 Nanoagents
		18.1.3 Nanotheranostics
	18.2 Recent approaches versus theranostic nanoagents
		18.2.1 Contemporary treatment methods and their drawbacks
	18.3 Nanotheranostics and neurological disorders
		18.3.1 Blood–brain barrier
		18.3.2 Theranostic nanoparticles employed in neurology
		18.3.3 Theranostic applications of nanosystems in neurological disorders
			18.3.3.1 Glioma (brain tumors)
			18.3.3.2 Alzheimer’s disease (AD)
			18.3.3.3 Parkinson’s disease (PD)
			18.3.3.4 Neurovascular diseases
	18.4 Nanotheranostics and rheumatoid arthritis
		18.4.1 Rheumatoid arthritis (RA)
		18.4.2 Current treatments and their drawbacks
		18.4.3 Nanotheranostic approach for rheumatoid arthritis
			18.4.3.1 Bioimaging and photodynamic therapy through nanocomposites in RA
			18.4.3.2 Magnetic-targeted chemo-photothermal nanotherapy in RA
			18.4.3.3 Combined photodynamic and photothermal therapy in RA
			18.4.3.4 Nanotheranostic approach for macrophage detection and therapy in RA
	18.5 Nanoparticle-based theranostic agents
		18.5.1 Iron oxide nanoparticle-based theranostic agents
		18.5.2 Quantum dot-based theranostic agents
		18.5.3 Gold nanoparticle-based theranostic agents
		18.5.4 Carbon nanotube-based theranostic agents
		18.5.5 Silica nanoparticle-based theranostic agents
	18.6 Theranostic nanoagents: future of nanomedicine
	18.7 Conclusion
	References
Chapter 19 - Improving the functionality of a nanomaterial by biological probes
	19.1 Introduction to nanomaterials
	19.2 Classifications of nanoparticles
		19.2.1 Metallic nanoparticles
			19.2.1.1 Gold and silver nanoparticles
			19.2.1.2 Palladium and platinum nanoparticles
			19.2.1.3 Noble metal nanoclusters
		19.2.2 Semiconductor quantum dots
		19.2.3 Metal oxide nanoparticles
			19.2.3.1 Iron oxide
			19.2.3.2 Silicon dioxide
			19.2.3.3 Titanium dioxide
		19.2.4 Organic nanoparticles
			19.2.4.1 Carbon allotropes
			19.2.4.2 Biopolymeric nanomaterials
		19.2.5 Upconversion nanoparticles
	19.3 Common conjugation approaches for biomolecule functionalized nanomaterials
		19.3.1 Conjugation approaches
			19.3.1.1 Encapsulation
			19.3.1.2 Noncovalent attachment
			19.3.1.3 Covalent and dative chemistry
		19.3.2 Functionalization of nanoparticles
			19.3.2.1 Small ligands
			19.3.2.2 Polymers
			19.3.2.3 Biological probes/biomolecules
				19.3.2.3.1 DNAzyme and DNA molecule functionalized nanoparticles
				19.3.2.3.2 Protein and antibody functionalized nanoparticles
				19.3.2.3.3 Glucosamine functionalized nanoparticles
				19.3.2.3.4 Peptide/peptidomimetics functionalized nanoparticles
	19.4 Basic chemistries behind conjugation approaches
		19.4.1 Functional groups and conjugation reactions
		19.4.2 Polyhistidine–nitrilotriacetic acid chelation
		19.4.3 Biotin–avidin chemistry
	19.5 Applications
		19.5.1 Detection of DNA, protein, and metal ions
		19.5.2 Detection of human pathogens
		19.5.3 Enhancement of antibacterial and anti-inflammatory activity
		19.5.4 Theranostics
	19.6 Conclusion and future perspective
	References
Chapter 20 - Nanostructures for the efficient oral delivery of chemotherapeutic agents
	20.1 Introduction
		20.1.1 Limitations of conventional chemotherapy
		20.1.2 Edges of nanoparticles over the other delivery system
		20.1.3 Components of nanoparticles as a targeting system
		20.1.4 Characteristics features of ideal targeting moieties
		20.1.5 The potential of nanocarriers as drug delivery systems
		20.1.6 Nanoparticle properties
		20.1.7 Cancer therapy: Selective targeting of tissues by nanotechnology
	20.2 Nanodrug carriers
		20.2.1 Classification of nanoparticles as drug carriers
		20.2.2 Micelles
		20.2.3 Solid-lipid nanoparticles (SLNs)
		20.2.4 Cubosomes
		20.2.5 Drug-polymer conjugates
		20.2.6 Antibody-drug conjugates
		20.2.7 Inorganic nanoparticles
		20.2.8 Carbon nanotubes (CNTs)
		20.2.9 Gold nanoparticles (GNPs)
		20.2.10 Porous silicon particles (PSiPs)
		20.2.11 Quantum dots (QDs)
		20.2.12 Iron oxide nanoparticles (IONPs)
		20.2.13 IONPs
	References
Chapter 21 - Photo-triggered theranostics nanomaterials: Development and challenges in cancer treatment
	21.1 Introduction of nanomaterials in phototherapeutics
	21.2 Types of nanomaterials
		21.2.1 Magnetic nanoparticles
		21.2.2 Properties and materials for preparation of photo-based nanomaterials
		21.2.3 Gold-based nanoparticles
		21.2.4 Carbon nanotubes
	21.3 Polymeric nanocarriers for photosensitizer/dye encapsulation
	21.4 Nanoconstructs for photodynamic therapy
	21.5 Photo-triggered theranostic nanocarriers
	21.6 Approaches to measure drug release through theranostic nanomedicine
		21.6.1 Silicon photonic crystals with pores
		21.6.2 Fluorescent nanoparticles
		21.6.3 Upconversion nanoparticles
		21.6.4 Radioluminescent nanoparticles
	21.7 Magnetic resonance imaging for monitoring release of drug
	21.8 Photo-triggered theranostics nanomaterials: Principle and applications
		21.8.1 Applications of photo-triggered theranostics nanomaterials in cancer treatments
		21.8.2 Therapeutic applications of photo-based theranostic nanoparticles
	21.9 Opportunities and limitations of nanomaterials
	21.10 Preclinical challenges
	21.11 Future aspects of nanomaterials in the therapeutics
	References
Chapter 22 - Nanocrystals in the drug delivery system
	22.1 Introduction to nanocrystals and nanosuspension
		22.1.1 Properties of nanocrystals (Colombo, 2017; Mitri et al., 2011)
		22.1.2 Nanocrystals and bioavailability
		22.1.3 Various methods of characterization of nanocrystals formulations (doi:10.3390/molecules201219851)
	22.2 Production methods and technology of nanocrystals
		22.2.1 Top down technology
			22.2.1.1 Homogenization
		22.2.2 Bottom up technology
		22.2.3 Top down and bottom up technology
		22.2.4 Spray drying
	22.3 Advantages and Disadvantages of nanocrystals
		22.3.1 Potential advantages and disadvantages of nanocrystals
		22.3.2 Disadvantages of nanocrystals
	22.4 Pharmaceutical Nanocrystals of API
		22.4.1 Case studies of drug loaded in the nanocrystals
		22.4.2 Application of nanocrystals-loaded carrier
			22.4.2.1 Nanocrystals in oral delivery system
			22.4.2.2 Parenteral administration of drug nanocrystals
			22.4.2.3 Drug nanocrystals for pulmonary drug delivery
			22.4.2.4 Drug nanocrystals for ophthalmic drug delivery
			22.4.2.4a Drug nanocrystals for dermal drug delivery
			22.4.2.5 Drug nanocrystals for targeted drug delivery
	22.5 Conclusion
	References
Index
	Back cover




نظرات کاربران