دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: Arpan Deyasi, Pampa Debnath, Asit Kumar Datta, Siddhartha Bhattacharyya سری: ISBN (شابک) : 9780367497347, 9781003047193 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 384 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Photonics, Plasmonics and Information Optics: Research and Technological Advances به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوتونیک، پلاسمونیک و اپتیک اطلاعات: پیشرفت های تحقیقاتی و فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد ویرایش شده، تحولات تکنولوژیکی و روندهای تحقیقاتی جاری در زمینه فوتونیک، پلاسمونیک و اپتیک، با تمرکز بر کریستال های فوتونی، دستگاه های نوری نیمه هادی، ارتباطات نوری و حسگرهای نوری، با تاکید بر بخش های عملی را پوشش می دهد. این به طور گسترده حاوی آخرین حوزه های تحقیقاتی است که توسط متخصصان و محققان در زمینه های مربوطه با تمرکز عمده بر فیزیک پایه ارائه شده است. کارهایی در زمینه سازه های باند باند الکترومغناطیسی (EBG) و فراسطح ها برای کاربردها در جنبه های مختلف سیستم های ارتباطی گنجانده شده است. علاوه بر این، پدیده های تحقیقاتی دستگاه های فوتونیکی مایکروویو را برای توسعه دستگاه های فرکانس بالا مینیاتوری پوشش می دهد.
This edited volume covers technological developments and current research trends in the field of photonics, plasmonics and optics, focusing on photonic crystals, semiconductor optical devices, optical communications and optical sensors, with an emphasis on practical sectors. It broadly contains the latest research domains contributed by experts and researchers in their respective fields with a major focus on the basic physics. Works in the area of electromagnetic bandgap structures (EBG) and metasurfaces are included for applications in different aspects of communications systems. Further, it covers research phenomena of microwave photonic devices to develop miniaturized high-frequency devices.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Editors Contributors Chapter 1: Foundation, Progress and Future of Photonics, Plasmonics and Information Optics: Researchers Perspective 1.1 Introduction 1.1.1 Electromagnetic Bandgap Structure 1.1.2 Photonic Crystal 1.1.3 Plasmonics 1.1.4 Computational Electromagnetics 1.1.5 Information Optics 1.1.6 Quantum Information Processing 1.2 Conclusion References Chapter 2: Bandgap Engineering of Sol–Gel Spin-Coated TiO 2 Thin Film on Glass Substrate 2.1 Introduction 2.2 Preparation of TiO 2 Solution and Thin Film 2.3 Results and Discussion 2.3.1 SEM Image 2.3.2 X-ray Diffraction (XRD) 2.3.3 Ellipsometry and Spectrophotometry Results 2.3.3.1 Thickness 2.3.3.2 Optical Transmission 2.3.3.3 Refractive Tndex ( n) 2.3.3.4 Porosity (P) 2.3.3.5 Optical Bandgap 2.3.3.6 Optical Dielectric Constant 2.3.3.7 Optical Conductivity 2.4 Conclusions References Chapter 3: Metamaterials and Metasurfaces for High-Frequency Applications 3.1 Introduction to Metamaterials 3.2 Metasurfaces 3.3 Metasurface absorbers 3.3.1 Single-Band Metasurface Absorber 3.3.2 Dual-Band Metasurface Absorber 3.3.3 Triple-Band Metasurface Absorber 3.3.4 Multiband and Bandwidth-Enhanced Metasurface Absorber 3.4 Metasurface Polarization-converting Structure 3.5 Metasurface Antenna 3.6 Conclusion Acknowledgement References Chapter 4: Design of Superlens Using 2D Photonic Crystal with Various Geometries under Polarized Incidence: Design of Superlens Using 2D Photonic Crystal 4.1 Introduction 4.1.1 Two-Dimensional Photonic Crystal 4.1.2 Square Lattice Photonic Crystal 4.1.3 Triangular Lattice Photonic Crystal 4.2 Mathematical Formulation 4.2.1 Photonic Band Structure 4.2.2 Two-Dimensional Photonic Crystal 4.2.2.1 Real-Space Representation of Square Lattice 4.2.2.2 Reciprocal Space Representation of Square Lattice 4.2.3 Real-Space Representation of Triangular Lattice 4.3 Result Analysis 4.3.1 The Square Lattice of Dielectric Columns 4.3.2 The Square Lattice of Air Columns 4.3.3 Triangular Lattice of Dielectric Columns 4.3.4 Triangular Lattice of Air Columns 4.3.5 Analysis of Result Different k -Valued Material in Triangular and Square Lattices 4.3.6 Case Study 1 (Material Si and Air) in TE Modes for Triangular Lattice 4.3.7 Case Study 2 (Material Si and Air) in TM Modes for Triangular Lattice 4.3.8 Case Study 3 (Materials Ge and Air) in TM Modes for Triangular Lattice 4.3.9 Case Study 4 (Materials Ge and Air) in TE Modes for Triangular Lattice 4.3.10 Case Study 5 (Material InP and Air) in TM Modes for Triangular Lattice 4.3.11 Case study 6 (Material GaAs and Air) in TM Modes for Triangular Lattice 4.3.12 Case Study 7 (Material Air and Si) in TM Modes in Square Lattice 4.3.13 Case study 8 (Material Air and Ge) in TM Modes in Square Lattice 4.3.14 Case Study 9 (material Air and InP) in TM Modes in Square Lattice 4.3.15 Case Study 10 (Material Air and GaAs) in TM Modes in Square Lattice 4.4 Conclusion References Chapter 5: Investigation on Some Fast Optical/Opto-Electronic Switching Systems for Implementing Different Modulation Schemes 5.1 Introduction 5.2 Modulation of Light by Pockels Cell Biased by Saw-Tooth Electronic Pulse 5.2.1 Joint Modulation on a Single Light Beam 5.2.2 Analytical Results 5.3 Characteristic Study on Different Harmonics of a Light Passing Through a Kerr Cell 5.3.1 Theoretical Analysis 5.3.2 Analytical Results 5.4 Some Applications of OTA Using Phase Encoded Light 5.5 Conduction of Wide-scale Phase Variation by Simultaneous Uses of Pockels and Kerr Materials 5.5.1 Electrically Controlled Phase and Intensity Variations of Using Pockels Material 5.5.2 Phase Variation in Kerr Material by Intensity Variation 5.5.3 Pockels and Kerr Materials Simultaneously for Massive Phase Variation 5.5.4 Theoretical Analysis 5.5.4.1 Efficiency of Modulation after Passing through Only the KDP Material 5.5.4.2 Efficiency of Modulation after Passing through Two Pockels and One Kerr Material 5.5.4.3 Efficiency of Modulation after Passing through Two KDP Materials 5.6 New Method of Conduction of Optical Phase Algebra by Pockels and Kerr Materials in Series 5.7 Alternative Use of Multi-passing for Increasing the Transmission Coefficient of KDP-based Modulator 5.8 Linear Frequency Variation of Light Using Kerr Nonlinearity by Parabolic Light Signal and in a Multi-Passing 5.8.1 Frequency Response of Kerr Medium for a Parabolic Type of Intensity Varying Signal after the First Feedback 5.8.2 Multi-Passing in Kerr Medium for Change of Frequency 5.9 Conclusion References Chapter 6: Slotted Photonic Crystal Waveguide: An Effective Platform for Efficient Nonlinear Photonic Applications 6.1 Introduction 6.2 Model Description and Optical Characterization 6.2.1 Coupled NLS Equations for SRS Interaction in Slow-Light Regime 6.3 Raman Amplification Characteristics under CW Laser Pumping 6.4 Raman Amplification Characteristics Under LED Pumping 6.5 Integrable Pump-Stokes Combiner 6.5.1 Transmittance of the Combiner 6.6 Design of All-Optical Pass Switch 6.6.1 Device Architecture of the All-Optical Pass Switch 6.6.2 Performance of the AOPS 6.7 Conclusion References Chapter 7: Performance Evaluation of Raman Amplifier-Embedded Optical Fibre Communication System at Both Minimum Dispersion and Minimum Attenuation Windows 7.1 Introduction 7.1.1 The Beginning and Need of Optical Communication 7.1.2 Need and Choice of Different Amplifiers in Optical Communication 7.1.3 Choice of Different Frequency Spectra: Pros and Cons 7.2 Raman Amplifier 7.2.1 Importance of Raman Amplifier Over Other Optical Fibre Amplifiers 7.2.2 Choice of Frequency Spectrum 7.2.3 Optical Properties to Be Investigated 7.2.4 Novelty of the Present Work 7.3 Results 7.3.1 Optical Properties Calculated at 1330 nm 7.3.2 Comparative Study with Properties Obtained at 1550 nm 7.4 Conclusion References Chapter 8: Ultra-Narrowband Optical Comb Filter Using Sampled Fibre Bragg Gratings 8.1 Introduction 8.1.1 Motivation 8.2 Optical Comb Filter 8.3 Basics of Fibre Bragg Grating 8.3.1 Apodized Gratings 8.3.2 Chirped Gratings 8.3.3 Phase Shifted Gratings 8.3.4 Superstructure Gratings 8.4 Uniform Sampled Fibre Bragg Grating 8.5 Sampled-chirped Fibre Bragg Grating 8.6 Techniques for Optical Comb Spectrum Generation 8.6.1 Multiple Phase Shift (MPS) Technique 8.6.2 The Spectral Talbot Effect 8.6.3 General Condition for Spectral Self-Imaging 8.7 Reflection Spectrum of CFBG, SFBG, SCFBG and Generation of Optical Comb Spectrum 8.7.1 Generation of Optical Comb Spectrum 8.7.2 U-SFBG Based Optical Comb Filter with MPS 8.7.3 SCFBG Based Optical Comb Filter Using Spectral Talbot Effect 8.8 Ultra-narrow Band Optical Comb Filters 8.9 Conclusion References Chapter 9: A Real-Time and Wireless Structural Health Monitoring Scheme for Aerospace Structures Using Fibre Bragg Grating Principle 9.1 Introduction 9.2 IL and ILTH Analysis 9.2.1 Existing Techniques 9.2.2 Three-Layer Identification Process 9.2.3 Theories 9.2.3.1 Layer 1: Estimation of Location 9.2.3.2 Layer 2: Deterministic Identification of Impact Location and Load Characteristics 9.2.4 Verification 9.2.4.1 Verifying the Forward Solving Model 9.2.4.1.1 Layer 1 Verifying Process 9.2.4.1.2 Layer 2 Verification 9.2.5 Summary 9.3 A Real-time Wireless Remote Monitoring Scheme 9.3.1 Real-Time Monitoring of Strain 9.3.2 Methodology 9.3.3 Functional Blocks 9.3.3.1 Fibre Bragg Grating 9.3.3.1.1 Sensor Selection and Deployment 9.3.3.1.2 Wireless Transceiver Selection and Deployment 9.3.3.1.3 Signal Acquisition and Processing on Local Site 9.3.3.1.4 Identification Analysis on Remote Site and Received Signal Verification 9.3.4 Summary 9.4 Conclusion Acknowledgement References Chapter 10: Gap Solitons in Photorefractive Optical Lattices 10.1 Introduction 10.2 Theoretical Foundation 10.2.1 Non-centrosymmetric Photorefractive Lattices 10.2.1.1 Bandgap Structure 10.2.1.2 Gap Solitons 10.2.1.3 Stability 10.2.2 Pyroelectric Photorefractive Lattices 10.2.2.1 Bandgap Structure 10.2.2.2 Gap Solitons 10.2.2.3 Stability 10.2.3 Centrosymmetric Photorefractive Lattices 10.2.3.1 Bandgap Structure 10.2.3.2 Gap Solitons 10.2.3.3 Stability 10.2.4 Comparative Study 10.3 Conclusions References Chapter 11: Real-Time Numerical Analysis of Photonic Bandgap Structures Using Finite Difference in Time-Domain Method 11.1 Introduction 11.2 Related Works 11.3 Finite Difference and Maxwell’s Equation 11.4 Source Waveform for FDTD Simulation 11.4.1 Gaussian Wave 11.4.2 Modulated Gaussian Wave 11.4.3 Total Field/Scatter Field Correction of the FDTD Source 11.5 Numerical Dispersion and Stability 11.6 Absorbing Boundary Conditions 11.6.1 Mur’s Absorbing Boundary Conditions 11.6.2 Perfectly Matched Layer 11.7 PBGS with Quarter-wavelength Material Duo 11.7.1 Characteristics of Thin Films with Subwavelength Dimensions 11.7.2 Bimaterial Cavity Resonator with Quarter-Wavelength Material Duo 11.7.3 Stopband Characteristics of the Structures ( HL) N ( HL) N and ( LH) N ( LH) N 11.8 Transmission Filters Using Fabry–Perot Cavities 11.8.1 Shifting the Central Wavelength of the Output Spectra at the Working Wavelength 11.8.2 Narrowband Optical Filter and Its Analysis 11.9 Conclusion References Chapter 12: Super Achromatic Multi-Level Diffractive Lens: A New Era Flat Lenses 12.1 Introduction 12.2 History 12.3 Problems in Conventional Diffractive Lens 12.3.1 Monochromatic Aberration 12.3.2 Defocus 12.3.3 Spherical Aberration 12.3.4 Comatic Aberration 12.3.5 Astigmatic Aberration 12.3.6 Field Curvature 12.3.7 Image Distortion 12.3.8 Chromatic Aberration 12.4 GRIN System 12.5 Flat Lens 12.6 MetaLens 12.7 Multi-diffractive Lens 12.8 Achromatic Lens 12.9 Super-achromatic Lens 12.10 Design and Methods 12.11 Iterative Direct Binary Search 12.12 Simulated Annealing 12.13 Genetic Algorithm 12.13.1 Initiate Population 12.13.2 Cost Function or Fitness Function 12.13.3 Natural Selection 12.13.4 Select Population for Mating 12.13.5 Generate Offspring 12.13.6 Mutate Selected Members from the Population 12.13.7 Terminate When Optimum Condition Is Reached 12.14 Iterative Fourier Transform Algorithm 12.15 Particle Swarm Optimization 12.15.1 Fabrication Techniques 12.15.2 Mask-Based Lithography 12.15.3 Parallel Direct Writing 12.15.4 Electron Beam Lithography 12.16 Comparative Analysis and Discussion 12.17 Conclusion References Chapter 13: Adaptive Repetitive Control of Peristaltic Pump Flow Rate with an Optical Flow Sensing System 13.1 Introduction 13.2 Rotary Peristaltic Pump 13.2.1 Different Pump Parameters 13.3 Peristaltic Pump Model 13.3.1 Disturbances and Uncertainties 13.4 Optical Sensor-based Application Including Peristaltic Pump 13.4.1 Case I. Continuous Monitoring of Intrapulse Measurement of Blood Flow 13.4.2 Case II. Optical Fibre-Based Spectrophotometer 13.4.3 Case III: Ultrasonic Vascular Vector Flow Mapping for 2D Flow Estimation 13.4.4 Case IV: Optical Fibre Sensor-Based Colorimetric Determination 13.4.5 Case V: Fluidic System Used to Test the pH Sensor 13.5 Proposed Method of Optical Flow Sensing System (OFSS) for Peristaltic Pump 13.6 Controller Design for Peristaltic Pump 13.6.1 Repetitive Control Loop Design 13.7 Simulation Results 13.8 Conclusion References Chapter 14: Conclusion References Index A B C D E F G H I K M O P Q R S