ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Photonics, Plasmonics and Information Optics: Research and Technological Advances

دانلود کتاب فوتونیک، پلاسمونیک و اپتیک اطلاعات: پیشرفت های تحقیقاتی و فناوری

Photonics, Plasmonics and Information Optics: Research and Technological Advances

مشخصات کتاب

Photonics, Plasmonics and Information Optics: Research and Technological Advances

دسته بندی: فیزیک
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9780367497347, 9781003047193 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 384 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Photonics, Plasmonics and Information Optics: Research and Technological Advances به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فوتونیک، پلاسمونیک و اپتیک اطلاعات: پیشرفت های تحقیقاتی و فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فوتونیک، پلاسمونیک و اپتیک اطلاعات: پیشرفت های تحقیقاتی و فناوری

این جلد ویرایش شده، تحولات تکنولوژیکی و روندهای تحقیقاتی جاری در زمینه فوتونیک، پلاسمونیک و اپتیک، با تمرکز بر کریستال های فوتونی، دستگاه های نوری نیمه هادی، ارتباطات نوری و حسگرهای نوری، با تاکید بر بخش های عملی را پوشش می دهد. این به طور گسترده حاوی آخرین حوزه های تحقیقاتی است که توسط متخصصان و محققان در زمینه های مربوطه با تمرکز عمده بر فیزیک پایه ارائه شده است. کارهایی در زمینه سازه های باند باند الکترومغناطیسی (EBG) و فراسطح ها برای کاربردها در جنبه های مختلف سیستم های ارتباطی گنجانده شده است. علاوه بر این، پدیده های تحقیقاتی دستگاه های فوتونیکی مایکروویو را برای توسعه دستگاه های فرکانس بالا مینیاتوری پوشش می دهد.


توضیحاتی درمورد کتاب به خارجی

This edited volume covers technological developments and current research trends in the field of photonics, plasmonics and optics, focusing on photonic crystals, semiconductor optical devices, optical communications and optical sensors, with an emphasis on practical sectors. It broadly contains the latest research domains contributed by experts and researchers in their respective fields with a major focus on the basic physics. Works in the area of electromagnetic bandgap structures (EBG) and metasurfaces are included for applications in different aspects of communications systems. Further, it covers research phenomena of microwave photonic devices to develop miniaturized high-frequency devices.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Editors
Contributors
Chapter 1: Foundation, Progress and Future of Photonics, Plasmonics and Information Optics: Researchers Perspective
	1.1 Introduction
		1.1.1 Electromagnetic Bandgap Structure
		1.1.2 Photonic Crystal
		1.1.3 Plasmonics
		1.1.4 Computational Electromagnetics
		1.1.5 Information Optics
		1.1.6 Quantum Information Processing
	1.2 Conclusion
	References
Chapter 2: Bandgap Engineering of Sol–Gel Spin-Coated TiO 2 Thin Film on Glass Substrate
	2.1 Introduction
	2.2 Preparation of TiO 2 Solution and Thin Film
	2.3 Results and Discussion
		2.3.1 SEM Image
		2.3.2 X-ray Diffraction (XRD)
		2.3.3 Ellipsometry and Spectrophotometry Results
			2.3.3.1 Thickness
			2.3.3.2 Optical Transmission
			2.3.3.3 Refractive Tndex ( n)
			2.3.3.4 Porosity (P)
			2.3.3.5 Optical Bandgap
			2.3.3.6 Optical Dielectric Constant
			2.3.3.7 Optical Conductivity
	2.4 Conclusions
	References
Chapter 3: Metamaterials and Metasurfaces for High-Frequency Applications
	3.1 Introduction to Metamaterials
	3.2 Metasurfaces
	3.3 Metasurface absorbers
		3.3.1 Single-Band Metasurface Absorber
		3.3.2 Dual-Band Metasurface Absorber
		3.3.3 Triple-Band Metasurface Absorber
		3.3.4 Multiband and Bandwidth-Enhanced Metasurface Absorber
	3.4 Metasurface Polarization-converting Structure
	3.5 Metasurface Antenna
	3.6 Conclusion
	Acknowledgement
	References
Chapter 4: Design of Superlens Using 2D Photonic Crystal with Various Geometries under Polarized Incidence: Design of Superlens Using 2D Photonic Crystal
	4.1 Introduction
		4.1.1 Two-Dimensional Photonic Crystal
		4.1.2 Square Lattice Photonic Crystal
		4.1.3 Triangular Lattice Photonic Crystal
	4.2 Mathematical Formulation
		4.2.1 Photonic Band Structure
		4.2.2 Two-Dimensional Photonic Crystal
			4.2.2.1 Real-Space Representation of Square Lattice
			4.2.2.2 Reciprocal Space Representation of Square Lattice
		4.2.3 Real-Space Representation of Triangular Lattice
	4.3 Result Analysis
		4.3.1 The Square Lattice of Dielectric Columns
		4.3.2 The Square Lattice of Air Columns
		4.3.3 Triangular Lattice of Dielectric Columns
		4.3.4 Triangular Lattice of Air Columns
		4.3.5 Analysis of Result Different k -Valued Material in Triangular and Square Lattices
		4.3.6 Case Study 1 (Material Si and Air) in TE Modes for Triangular Lattice
		4.3.7 Case Study 2 (Material Si and Air) in TM Modes for Triangular Lattice
		4.3.8 Case Study 3 (Materials Ge and Air) in TM Modes for Triangular Lattice
		4.3.9 Case Study 4 (Materials Ge and Air) in TE Modes for Triangular Lattice
		4.3.10 Case Study 5 (Material InP and Air) in TM Modes for Triangular Lattice
		4.3.11 Case study 6 (Material GaAs and Air) in TM Modes for Triangular Lattice
		4.3.12 Case Study 7 (Material Air and Si) in TM Modes in Square Lattice
		4.3.13 Case study 8 (Material Air and Ge) in TM Modes in Square Lattice
		4.3.14 Case Study 9 (material Air and InP) in TM Modes in Square Lattice
		4.3.15 Case Study 10 (Material Air and GaAs) in TM Modes in Square Lattice
	4.4 Conclusion
	References
Chapter 5: Investigation on Some Fast Optical/Opto-Electronic Switching Systems for Implementing Different Modulation Schemes
	5.1 Introduction
	5.2 Modulation of Light by Pockels Cell Biased by Saw-Tooth Electronic Pulse
		5.2.1 Joint Modulation on a Single Light Beam
		5.2.2 Analytical Results
	5.3 Characteristic Study on Different Harmonics of a Light Passing Through a Kerr Cell
		5.3.1 Theoretical Analysis
		5.3.2 Analytical Results
	5.4 Some Applications of OTA Using Phase Encoded Light
	5.5 Conduction of Wide-scale Phase Variation by Simultaneous Uses of Pockels and Kerr Materials
		5.5.1 Electrically Controlled Phase and Intensity Variations of Using Pockels Material
		5.5.2 Phase Variation in Kerr Material by Intensity Variation
		5.5.3 Pockels and Kerr Materials Simultaneously for Massive Phase Variation
		5.5.4 Theoretical Analysis
			5.5.4.1 Efficiency of Modulation after Passing through Only the KDP Material
			5.5.4.2 Efficiency of Modulation after Passing through Two Pockels and One Kerr Material
			5.5.4.3 Efficiency of Modulation after Passing through Two KDP Materials
	5.6 New Method of Conduction of Optical Phase Algebra by Pockels and Kerr Materials in Series
	5.7 Alternative Use of Multi-passing for Increasing the Transmission Coefficient of KDP-based Modulator
	5.8 Linear Frequency Variation of Light Using Kerr Nonlinearity by Parabolic Light Signal and in a Multi-Passing
		5.8.1 Frequency Response of Kerr Medium for a Parabolic Type of Intensity Varying Signal after the First Feedback
		5.8.2 Multi-Passing in Kerr Medium for Change of Frequency
	5.9 Conclusion
	References
Chapter 6: Slotted Photonic Crystal Waveguide: An Effective Platform for Efficient Nonlinear Photonic Applications
	6.1 Introduction
		6.2 Model Description and Optical Characterization
		6.2.1 Coupled NLS Equations for SRS Interaction in Slow-Light Regime
	6.3 Raman Amplification Characteristics under CW Laser Pumping
	6.4 Raman Amplification Characteristics Under LED Pumping
		6.5 Integrable Pump-Stokes Combiner
		6.5.1 Transmittance of the Combiner
	6.6 Design of All-Optical Pass Switch
		6.6.1 Device Architecture of the All-Optical Pass Switch
		6.6.2 Performance of the AOPS
	6.7 Conclusion
	References
Chapter 7: Performance Evaluation of Raman Amplifier-Embedded Optical Fibre Communication System at Both Minimum Dispersion and Minimum Attenuation Windows
	7.1 Introduction
		7.1.1 The Beginning and Need of Optical Communication
		7.1.2 Need and Choice of Different Amplifiers in Optical Communication
		7.1.3 Choice of Different Frequency Spectra: Pros and Cons
	7.2 Raman Amplifier
		7.2.1 Importance of Raman Amplifier Over Other Optical Fibre Amplifiers
		7.2.2 Choice of Frequency Spectrum
		7.2.3 Optical Properties to Be Investigated
		7.2.4 Novelty of the Present Work
	7.3 Results
		7.3.1 Optical Properties Calculated at 1330 nm
		7.3.2 Comparative Study with Properties Obtained at 1550 nm
	7.4 Conclusion
	References
Chapter 8: Ultra-Narrowband Optical Comb Filter Using Sampled Fibre Bragg Gratings
	8.1 Introduction
		8.1.1 Motivation
	8.2 Optical Comb Filter
	8.3 Basics of Fibre Bragg Grating
		8.3.1 Apodized Gratings
		8.3.2 Chirped Gratings
		8.3.3 Phase Shifted Gratings
		8.3.4 Superstructure Gratings
	8.4 Uniform Sampled Fibre Bragg Grating
	8.5 Sampled-chirped Fibre Bragg Grating
	8.6 Techniques for Optical Comb Spectrum Generation
		8.6.1 Multiple Phase Shift (MPS) Technique
		8.6.2 The Spectral Talbot Effect
		8.6.3 General Condition for Spectral Self-Imaging
	8.7 Reflection Spectrum of CFBG, SFBG, SCFBG and Generation of Optical Comb Spectrum
		8.7.1 Generation of Optical Comb Spectrum
		8.7.2 U-SFBG Based Optical Comb Filter with MPS
		8.7.3 SCFBG Based Optical Comb Filter Using Spectral Talbot Effect
	8.8 Ultra-narrow Band Optical Comb Filters
	8.9 Conclusion
	References
Chapter 9: A Real-Time and Wireless Structural Health Monitoring Scheme for Aerospace Structures Using Fibre Bragg Grating Principle
	9.1 Introduction
	9.2 IL and ILTH Analysis
		9.2.1 Existing Techniques
		9.2.2 Three-Layer Identification Process
		9.2.3 Theories
			9.2.3.1 Layer 1: Estimation of Location
			9.2.3.2 Layer 2: Deterministic Identification of Impact Location and Load Characteristics
		9.2.4 Verification
			9.2.4.1 Verifying the Forward Solving Model
				9.2.4.1.1 Layer 1 Verifying Process
				9.2.4.1.2 Layer 2 Verification
		9.2.5 Summary
	9.3 A Real-time Wireless Remote Monitoring Scheme
		9.3.1 Real-Time Monitoring of Strain
		9.3.2 Methodology
		9.3.3 Functional Blocks
			9.3.3.1 Fibre Bragg Grating
				9.3.3.1.1 Sensor Selection and Deployment
				9.3.3.1.2 Wireless Transceiver Selection and Deployment
				9.3.3.1.3 Signal Acquisition and Processing on Local Site
				9.3.3.1.4 Identification Analysis on Remote Site and Received Signal Verification
		9.3.4 Summary
	9.4 Conclusion
	Acknowledgement
	References
Chapter 10: Gap Solitons in Photorefractive Optical Lattices
	10.1 Introduction
	10.2 Theoretical Foundation
		10.2.1 Non-centrosymmetric Photorefractive Lattices
			10.2.1.1 Bandgap Structure
			10.2.1.2 Gap Solitons
			10.2.1.3 Stability
		10.2.2 Pyroelectric Photorefractive Lattices
			10.2.2.1 Bandgap Structure
			10.2.2.2 Gap Solitons
			10.2.2.3 Stability
		10.2.3 Centrosymmetric Photorefractive Lattices
			10.2.3.1 Bandgap Structure
			10.2.3.2 Gap Solitons
			10.2.3.3 Stability
		10.2.4 Comparative Study
	10.3 Conclusions
	References
Chapter 11: Real-Time Numerical Analysis of Photonic Bandgap Structures Using Finite Difference in Time-Domain Method
	11.1 Introduction
	11.2 Related Works
	11.3 Finite Difference and Maxwell’s Equation
	11.4 Source Waveform for FDTD Simulation
		11.4.1 Gaussian Wave
		11.4.2 Modulated Gaussian Wave
		11.4.3 Total Field/Scatter Field Correction of the FDTD Source
	11.5 Numerical Dispersion and Stability
	11.6 Absorbing Boundary Conditions
		11.6.1 Mur’s Absorbing Boundary Conditions
		11.6.2 Perfectly Matched Layer
	11.7 PBGS with Quarter-wavelength Material Duo
		11.7.1 Characteristics of Thin Films with Subwavelength Dimensions
		11.7.2 Bimaterial Cavity Resonator with Quarter-Wavelength Material Duo
		11.7.3 Stopband Characteristics of the Structures ( HL) N ( HL) N and ( LH) N ( LH) N
	11.8 Transmission Filters Using Fabry–Perot Cavities
		11.8.1 Shifting the Central Wavelength of the Output Spectra at the Working Wavelength
		11.8.2 Narrowband Optical Filter and Its Analysis
	11.9 Conclusion
	References
Chapter 12: Super Achromatic Multi-Level Diffractive Lens: A New Era Flat Lenses
	12.1 Introduction
	12.2 History
	12.3 Problems in Conventional Diffractive Lens
		12.3.1 Monochromatic Aberration
		12.3.2 Defocus
		12.3.3 Spherical Aberration
		12.3.4 Comatic Aberration
		12.3.5 Astigmatic Aberration
		12.3.6 Field Curvature
		12.3.7 Image Distortion
		12.3.8 Chromatic Aberration
	12.4 GRIN System
	12.5 Flat Lens
	12.6 MetaLens
	12.7 Multi-diffractive Lens
	12.8 Achromatic Lens
	12.9 Super-achromatic Lens
	12.10 Design and Methods
	12.11 Iterative Direct Binary Search
	12.12 Simulated Annealing
	12.13 Genetic Algorithm
		12.13.1 Initiate Population
		12.13.2 Cost Function or Fitness Function
		12.13.3 Natural Selection
		12.13.4 Select Population for Mating
		12.13.5 Generate Offspring
		12.13.6 Mutate Selected Members from the Population
		12.13.7 Terminate When Optimum Condition Is Reached
	12.14 Iterative Fourier Transform Algorithm
	12.15 Particle Swarm Optimization
		12.15.1 Fabrication Techniques
		12.15.2 Mask-Based Lithography
		12.15.3 Parallel Direct Writing
		12.15.4 Electron Beam Lithography
	12.16 Comparative Analysis and Discussion
	12.17 Conclusion
	References
Chapter 13: Adaptive Repetitive Control of Peristaltic Pump Flow Rate with an Optical Flow Sensing System
	13.1 Introduction
	13.2 Rotary Peristaltic Pump
		13.2.1 Different Pump Parameters
	13.3 Peristaltic Pump Model
		13.3.1 Disturbances and Uncertainties
	13.4 Optical Sensor-based Application Including Peristaltic Pump
		13.4.1 Case I. Continuous Monitoring of Intrapulse Measurement of Blood Flow
		13.4.2 Case II. Optical Fibre-Based Spectrophotometer
		13.4.3 Case III: Ultrasonic Vascular Vector Flow Mapping for 2D Flow Estimation
		13.4.4 Case IV: Optical Fibre Sensor-Based Colorimetric Determination
		13.4.5 Case V: Fluidic System Used to Test the pH Sensor
	13.5 Proposed Method of Optical Flow Sensing System (OFSS) for Peristaltic Pump
	13.6 Controller Design for Peristaltic Pump
		13.6.1 Repetitive Control Loop Design
	13.7 Simulation Results
	13.8 Conclusion
	References
Chapter 14: Conclusion
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	O
	P
	Q
	R
	S




نظرات کاربران