دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Ph.D. Choi, Seok Ki (editor) سری: Micro and Nano Technologies ISBN (شابک) : 012817840X, 9780128178409 ناشر: Elsevier Science Ltd سال نشر: 2020 تعداد صفحات: 409 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Photonanotechnology for Therapeutics and Imaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوتونوتکنولوژی برای درمان و تصویربرداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فتونانوتکنولوژی برای درمان و تصویربرداری مفاهیم اصلی و پیشرفتهای اخیر در استفاده از فناوری فوتونی را با نانومواد گزارششده در زمینههای بینرشتهای مختلف، از جمله شیمی، علم مواد، مهندسی زیستپزشکی و زیستپزشکی بررسی میکند. این کتاب تاثیر این فناوری را بر پیشرفت روشهای درمانی و روشهای تصویربرداری در سرطانها، بیماریهای عفونی و سایر بیماریهای جدی مورد بحث قرار میدهد. فنآوری فوتون به مطالعه اصل طراحی، کاربرد و توسعه نانومواد فوتواکتیو میپردازد. استراتژیهای کنترلشده با نور را برای توسعه نانودرمانها، عوامل تصویربرداری و نانودستگاههای تشخیصی اعمال میکند.
Photonanotechnology for Therapeutics and Imaging surveys major concepts and recent advances in the use of photonanotechnology with nanomaterials reported in various interdisciplinary fields, including chemistry, materials science, biomedical engineering and biomedicine. This book discusses the impact of this technology on the advancement of therapeutic modalities and imaging methods in cancers, infectious diseases and other serious diseases. Photonanotechnology studies the design principle, application and development of photoactive nanomaterials. It applies light-controlled strategies for the development of nanotherapeutics, imaging agents and diagnostic nanodevices.
Cover Photonanotechnology for Therapeutics and Imaging Copyright Contributors Preface 1 - Light sources for photonanotechnology 1.1 Introduction 1.2 Basic properties of light 1.2.1 Absorption 1.2.2 Scattering 1.2.3 Penetration 1.3 Division of light sources 1.3.1 Ultraviolet light 1.3.2 Visible light 1.3.3 Near infrared light 1.4 Nanotechnology for phototherapy: overview 1.4.1 Light-controlled drug release 1.4.2 Photothermal therapy 1.4.3 Photodynamic therapy 1.5 Summary Abbreviations Acknowledgments References 2 - Hybrid nanogels for photoacoustic imaging and photothermal therapy 2.1 Introduction 2.2 Inorganic or organic nanomaterials for photoacoustic imaging and photothermal therapy 2.2.1 Metal or inorganic nanoparticles 2.2.2 Conducting polymers 2.2.3 Small organic molecules 2.3 Nanogels 2.4 Hybrid nanogels 2.4.1 Metal or inorganic nanoparticle-incorporated nanogels 2.4.2 Conducting polymer–incorporated nanogels 2.4.3 Small organic molecule-incorporated nanogels 2.5 Conclusions and perspectives Acknowledgments References 3 - Graphene-based nanomaterials for healthcare applications 3.1 Introduction 3.2 Types of graphene-based nanomaterials 3.2.1 Structure of graphene 3.2.2 Dimensionally different graphene nanomaterials 3.2.3 Graphene-based hybrid and composite materials 3.3 Preparation of graphene-based nanomaterials 3.3.1 Top-down approach 3.3.1.1 Mechanical exfoliation 3.3.1.2 Sonication 3.3.1.3 Electrochemical method 3.3.1.4 Chemical oxidation method 3.3.1.5 Hydrothermal method 3.3.1.6 Microwave-assisted method 3.3.2 Bottom-up approach 3.3.2.1 Chemical vapor deposition 3.3.2.2 Epitaxial growth of graphene by thermal decomposition 3.3.2.3 Synthesis of graphene layers from metal–carbon melts 3.3.3 Surface functionalization of graphene 3.4 Optical properties of graphene-based nanomaterials 3.5 Applications of graphene-based nanomaterials in healthcare 3.5.1 Bioimaging 3.5.2 Photodynamic therapy 3.5.3 Photothermal therapy 3.5.4 Drug delivery 3.5.5 Other applications 3.6 Toxicity of graphene-based nanomaterials 3.7 Summary and outlook References 4 - Near-infrared-responsive gold nanoparticle-based photothermal agents: from synthesis to anticancer applications 4.1 Introduction 4.2 Preparation of near-infrared-responsive gold nanoparticles 4.2.1 Preparation of near-infrared-responsive gold nanorods 4.2.2 Preparation of near-infrared-responsive gold nanoshells 4.2.3 Preparation of near-infrared-responsive gold nanocages and nanostars 4.3 Near-infrared-responsive gold nanoparticle-based photothermal therapy against cancers 4.3.1 Functionalized gold nanoparticles for improving photothermal therapy efficacy 4.3.2 Optimizing gold nanoparticle-based photothermal therapy to fight cancer metastasis 4.4 Gold nanoparticle-based combination therapies 4.4.1 Gold NP-based photothermal therapy in combination with chemotherapy 4.4.2 Gold nanoparticle-based photothermal therapy in combination with gene therapy 4.4.3 Gold nanoparticle-based photothermal therapy in combination with photodynamic therapy 4.4.4 Gold nanoparticle-based photothermal therapy in combination with immunotherapy 4.5 Conclusions and remarks Acknowledgments References 5 - Dual imaging and photodynamic therapy anticancer theranostic nanoparticles 5.1 Introduction 5.2 Silicon and silica nanoparticles 5.3 Graphene nanoparticles 5.4 Polymeric nanoparticles 5.5 Inorganic photosensitizers: titanium dioxide and SnxWO3 nanoparticles 5.6 Copper nanoparticles 5.7 Nanoparticles for X-ray-induced photodynamic therapy 5.8 Gold nanoparticles 5.9 Iron oxide nanoparticles 5.10 Upconverting nanoparticles 5.11 External-stimuli-activated nanoparticles 5.11.1 Enzyme-activated nanoparticles 5.11.2 pH-activated nanoparticles 5.11.3 Hydrogen peroxide–activated nanoparticles 5.11.4 Redox-responsive nanoparticles 5.12 Conclusions References 6 - Upconversion nanoparticles: a toolbox for biomedical applications 6.1 Introduction 6.2 The synthesis 6.2.1 Thermal decomposition 6.2.2 Hydrothermal/solvothermal synthesis 6.2.3 Coprecipitation 6.3 Engineering upconverting fluorescence 6.3.1 Mechanism of upconverting emission 6.3.2 Tuning emission color 6.3.2.1 Doping concentration 6.3.2.2 Different host–dopant combinations 6.3.2.3 Luminescence resonance energy transfer 6.3.3 Enhancing fluorescent intensity 6.3.3.1 Surface passivation 6.3.3.2 Doping concentration 6.3.3.3 Heterogeneously doping 6.3.3.4 Surface plasmon resonance 6.3.4 Modulating excitation wavelength 6.4 Surface modification for biomedical applications 6.4.1 Generating a hydrophilic surface 6.4.1.1 Ligand exchange 6.4.1.2 Coating a second layer of ligand 6.4.1.3 Ligand oxidation 6.4.1.4 Silica layer coating and silanization 6.4.2 Bioconjugation 6.5 Summary and outlook References 7 - Imaging and therapy with upconversion nanoparticles 7.1 Introduction 7.2 Upconverting fluorescence bioimaging 7.2.1 Imaging and monitoring of cells 7.2.2 Upconverting imaging of tumor targeting 7.2.3 Upconverting fluorescence bioimaging of other tissues 7.3 Upconversion nanoparticles as multimodal imaging nanoprobes 7.3.1 X-ray and computed tomography imaging 7.3.2 Magnetic resonance imaging 7.3.3 Positron emission tomography and single-photon emission computed tomography 7.3.4 Photoacoustic imaging 7.3.5 Multimodal imaging techniques 7.4 Therapeutic applications of upconversion nanoparticles 7.4.1 Photodynamic therapy 7.4.2 Synergistic combination of photodynamic therapy and other therapeutic modalities 7.4.3 Other therapeutic applications with upconversion nanoparticles as light transducers 7.5 Concluding remarks and outlook References 8 - Application of lanthanide-doped luminescence nanoparticles in imaging and therapeutics 8.1 Basic theories 8.1.1 Introduction and merits of lanthanide elements 8.1.2 Downconversion luminescence 8.1.2.1 Definition and characteristics 8.1.2.2 Mechanism 8.1.2.2.1 Nonradiative relaxation 8.1.2.2.2 Radiation 8.1.2.2.3 Sensitized luminescence 8.1.2.2.4 Quantum cutting 8.1.2.3 Example 8.1.2.3.1 LiGdF4: Eu3+ system 8.1.2.3.2 LiGdF4: Er3+, Tb3+ system 8.1.3 Upconversion luminescence 8.1.3.1 Definition and characteristics 8.1.3.2 Mechanism 8.1.3.2.1 Excited state absorption (two- or multistep absorption) 8.1.3.2.2 Energy transfer upconversion 8.1.3.2.3 Cooperative upconversion 8.1.3.2.3.1 Photon avalanche 8.1.3.3 Example: Yb-Er system 8.1.3.4 Comparison 8.1.4 Other sources to induce luminescence 8.1.4.1 Cathodoluminescence 8.1.4.2 Mechanoluminescence 8.1.5 Biological properties 8.1.5.1 Tissue penetration of radiation 8.1.5.1.1 Traditional visible window 8.1.5.1.2 Near-infrared window 8.1.5.2 Cytotoxicity of lanthanide-doped nanoparticles 8.1.5.3 Biodistribution and intracorporal circulation of lanthanide-doped nanoparticles 8.2 Synthetic methods 8.2.1 Introduction 8.2.2 Methods 8.2.2.1 Coprecipitation method 8.2.2.2 Sol-gel method 8.2.2.3 Pyrolysis method 8.2.2.4 Solvothermal method 8.2.3 Comparison 8.3 Modification methods 8.3.1 Introduction 8.3.2 Luminescence adjustment 8.3.2.1 Methods to modify luminescence intensity 8.3.2.1.1 Coating 8.3.2.1.2 Ion doping 8.3.2.1.2.1 Altering the crystal field symmetry 8.3.2.1.2.2 Modifying crystal growth 8.3.2.2 Methods to modify luminescence color 8.3.2.2.1 Altering the center of luminescence 8.3.2.2.2 Altering the excitation power 8.3.2.2.3 Altering the excitation wavelength 8.3.3 Surface modification 8.3.3.1 Surface ligand exchange method 8.3.3.2 Ligand oxidation method 8.3.3.3 Polymer encapsulation method 8.3.3.4 Silica coating method 8.4 Application in imaging 8.4.1 Introduction 8.4.1.1 Common bioimaging methods 8.4.1.2 Lanthanide-doped nanoparticle imaging: a concise comparison 8.4.2 Application of lanthanide-doped nanoparticles in imaging 8.4.2.1 Monomodal imaging 8.4.2.1.1 Photoluminescence imaging 8.4.2.1.2 Cathodoluminescence imaging 8.4.2.1.3 Mechanoluminescence 8.4.2.2 Dual- and multimodal imaging 8.5 Application in therapeutics 8.5.1 Photodynamic therapy 8.5.1.1 Introduction 8.5.1.2 Photosensitizer and upconversion-photodynamic therapy 8.5.1.3 Practical application 8.5.2 Light-controlled drug delivery system 8.5.2.1 Introduction 8.5.2.2 Stimuli-responsive designs 8.5.2.2.1 pH variance 8.5.2.2 2 NIR radiation 8.5.3 Theranostics References 9 - Photocleavable linkers: design and applications in nanotechnology 9.1 Introduction 9.2 Selection of light sources 9.3 Design of photocleavable linkers 9.3.1 Properties of ortho-nitrobenzyl linkers 9.3.2 Properties of thioacetal ortho-nitrobenzaldehyde linkers 9.3.3 Properties of coumarin linkers 9.3.4 Properties of cyanine linkers 9.3.5 Use of miscellaneous linkers 9.4 Synthesis of photocleavable linkers 9.4.1 Functionalization of ortho-nitrobenzyl linkers 9.4.2 Functionalization of thioacetal ortho-nitrobenzyl linkers 9.5 Conjugation chemistry of therapeutic agents 9.5.1 Methotrexate 9.5.2 Doxorubicin 9.5.3 Paclitaxel 9.5.4 Antibacterial agents 9.6 Conjugation chemistry for nanoconjugates 9.7 Concluding remarks Abbreviations Acknowledgments References 10 - Photocontrolled nanosystems for antitumor drug delivery 10.1 Introduction 10.2 Folic acid receptor 10.3 Anticancer therapeutic agents 10.4 Folate receptor–targeted methotrexate delivery 10.4.1 Synthesis of generation 5(folic acid)(methotrexate–ortho-nitrobenzyl) 10.4.2 Release kinetics of ortho-nitrobenzyl-linked methotrexate 10.4.3 Release kinetics of generation 5(folic acid)(methotrexate–ortho-nitrobenzyl) 10.5 Folate receptor–targeted doxorubicin delivery 10.5.1 Synthesis of doxorubicin dendrimer conjugates 10.5.2 Release kinetics of ortho-nitrobenzyl–linked doxorubicin 10.5.3 Release kinetics of thioacetal ortho-nitrobenzyl–linked doxorubicin 10.6 Summary and future perspectives Abbreviations Acknowledgments References 11 - Photocontrolled nanosystems for antibacterial drug delivery 11.1 Introduction 11.2 Targeting ligands for bacterial cells 11.2.1 Gram(+) bacteria 11.2.2 Gram(−) bacteria 11.3 Design of bacteria-targeting nanosystems 11.3.1 Multivalent ligand strategy 11.3.2 Gram(+) cells 11.3.2.1 Cell wall peptide 11.3.2.2 Penicillin-binding protein 11.3.2.3 Phospholipids and teichoic acid 11.3.3 Gram(−) cells 11.3.3.1 Lipopolysaccharide 11.3.3.2 Phospholipids 11.3.3.3 Lectins 11.4 Nanodelivery systems for therapeutic applications 11.4.1 Photocontrolled drug release 11.4.1.1 Nontargeted release 11.4.1.2 Lipopolysaccharide targeted release 11.4.2 Antibacterial photodynamic therapy 11.4.2.1 Nontargeted photodynamic therapy 11.4.2.2 Targeted photodynamic therapy 11.4.2.3 Upconversion nanocrystal–enabled photodynamic therapy 11.4.3 Antibacterial photothermal therapy 11.4.3.1 Nontargeted photothermal therapy 11.4.3.2 Targeted photothermal therapy 11.5 Conclusion and future perspectives Abbreviations Acknowledgments References 12 - Upconversion nanocrystals for near-infrared-controlled drug delivery 12.1 Introduction 12.2 Luminescence bands for therapeutic applications 12.2.1 Visible bands 12.2.2 Ultraviolet bands 12.3 Strategies of upconversion nanocrystal integration for therapeutic applications 12.3.1 Core-shell approach 12.3.2 Encapsulation approach 12.3.3 Conjugation approach 12.4 Modular integration of upconversion nanocrystals for folate receptor–targeted delivery 12.4.1 Design of doxorubicin–linker constructs 12.4.2 Folate receptor–targeting G5 dendrimers 12.4.3 Modular integration to upconversion nanocrystal @(G5FA) 12.4.4 Upconversion nanocrystal @(doxorubicin-ortho-nitrobenzyl) (G5FA) 12.4.5 Upconversion nanocrystal @mSiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA) 12.5 Near-infrared imaging of upconversion nanocrystal nanocomposites 12.5.1 Upconversion nanocrystal @(G5FA) 12.5.2 Upconversion nanocrystal @mSiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA) 12.6 Near-infrared-controlled induction of cytotoxicity 12.6.1 Upconversion nanocrystal @(doxorubicin-ortho-nitrobenzyl) (G5FA) 12.6.2 Upconversion nanocrystal @SiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA) 12.7 Conclusion and future perspectives Abbreviations Acknowledgments References Appendices References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover