ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Photonanotechnology for Therapeutics and Imaging

دانلود کتاب فوتونوتکنولوژی برای درمان و تصویربرداری

Photonanotechnology for Therapeutics and Imaging

مشخصات کتاب

Photonanotechnology for Therapeutics and Imaging

ویرایش: 1 
نویسندگان: ,   
سری: Micro and Nano Technologies 
ISBN (شابک) : 012817840X, 9780128178409 
ناشر: Elsevier Science Ltd 
سال نشر: 2020 
تعداد صفحات: 409 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Photonanotechnology for Therapeutics and Imaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فوتونوتکنولوژی برای درمان و تصویربرداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فوتونوتکنولوژی برای درمان و تصویربرداری



فتونانوتکنولوژی برای درمان و تصویربرداری مفاهیم اصلی و پیشرفت‌های اخیر در استفاده از فناوری فوتونی را با نانومواد گزارش‌شده در زمینه‌های بین‌رشته‌ای مختلف، از جمله شیمی، علم مواد، مهندسی زیست‌پزشکی و زیست‌پزشکی بررسی می‌کند. این کتاب تاثیر این فناوری را بر پیشرفت روش‌های درمانی و روش‌های تصویربرداری در سرطان‌ها، بیماری‌های عفونی و سایر بیماری‌های جدی مورد بحث قرار می‌دهد. فن‌آوری فوتون به مطالعه اصل طراحی، کاربرد و توسعه نانومواد فوتواکتیو می‌پردازد. استراتژی‌های کنترل‌شده با نور را برای توسعه نانودرمان‌ها، عوامل تصویربرداری و نانودستگاه‌های تشخیصی اعمال می‌کند.

  • آخرین اطلاعات را در مورد سیستم‌های تحویل دارو با نور کنترل شده ارائه می‌دهد
  • جزئیات نحوه طراحی نانومواد فوتواکتیو برای آزاد کردن گونه‌های اکسیژن فعال (ROS) برای درمان فتودینامیک (PDT)
  • توضیح می‌دهد که چگونه نانومواد فوتواکتیو توانایی القای گرمایش پلاسمونیک سطحی برای اثرات درمانی فتوترمال (PTT) را دارند

توضیحاتی درمورد کتاب به خارجی

Photonanotechnology for Therapeutics and Imaging surveys major concepts and recent advances in the use of photonanotechnology with nanomaterials reported in various interdisciplinary fields, including chemistry, materials science, biomedical engineering and biomedicine. This book discusses the impact of this technology on the advancement of therapeutic modalities and imaging methods in cancers, infectious diseases and other serious diseases. Photonanotechnology studies the design principle, application and development of photoactive nanomaterials. It applies light-controlled strategies for the development of nanotherapeutics, imaging agents and diagnostic nanodevices.

  • Provides the latest information on photocontrolled drug delivery systems
  • Details how photoactive nanomaterials are designed to release reactive oxygen species (ROS) for photodynamic therapy (PDT)
  • Explains how photoactive nanomaterials have the ability to induce surface plasmonic heating for photothermal therapeutic (PTT) effects


فهرست مطالب

Cover
Photonanotechnology for Therapeutics and Imaging
Copyright
Contributors
Preface
1 - Light sources for photonanotechnology
	1.1 Introduction
	1.2 Basic properties of light
		1.2.1 Absorption
		1.2.2 Scattering
		1.2.3 Penetration
	1.3 Division of light sources
		1.3.1 Ultraviolet light
		1.3.2 Visible light
		1.3.3 Near infrared light
	1.4 Nanotechnology for phototherapy: overview
		1.4.1 Light-controlled drug release
		1.4.2 Photothermal therapy
		1.4.3 Photodynamic therapy
	1.5 Summary
	Abbreviations
	Acknowledgments
	References
2 - Hybrid nanogels for photoacoustic imaging and photothermal therapy
	2.1 Introduction
	2.2 Inorganic or organic nanomaterials for photoacoustic imaging and photothermal therapy
		2.2.1 Metal or inorganic nanoparticles
		2.2.2 Conducting polymers
		2.2.3 Small organic molecules
	2.3 Nanogels
	2.4 Hybrid nanogels
		2.4.1 Metal or inorganic nanoparticle-incorporated nanogels
		2.4.2 Conducting polymer–incorporated nanogels
		2.4.3 Small organic molecule-incorporated nanogels
	2.5 Conclusions and perspectives
	Acknowledgments
	References
3 - Graphene-based nanomaterials for healthcare applications
	3.1 Introduction
	3.2 Types of graphene-based nanomaterials
		3.2.1 Structure of graphene
		3.2.2 Dimensionally different graphene nanomaterials
		3.2.3 Graphene-based hybrid and composite materials
	3.3 Preparation of graphene-based nanomaterials
		3.3.1 Top-down approach
			3.3.1.1 Mechanical exfoliation
			3.3.1.2 Sonication
			3.3.1.3 Electrochemical method
			3.3.1.4 Chemical oxidation method
			3.3.1.5 Hydrothermal method
			3.3.1.6 Microwave-assisted method
		3.3.2 Bottom-up approach
			3.3.2.1 Chemical vapor deposition
			3.3.2.2 Epitaxial growth of graphene by thermal decomposition
			3.3.2.3 Synthesis of graphene layers from metal–carbon melts
		3.3.3 Surface functionalization of graphene
	3.4 Optical properties of graphene-based nanomaterials
	3.5 Applications of graphene-based nanomaterials in healthcare
		3.5.1 Bioimaging
		3.5.2 Photodynamic therapy
		3.5.3 Photothermal therapy
		3.5.4 Drug delivery
		3.5.5 Other applications
	3.6 Toxicity of graphene-based nanomaterials
	3.7 Summary and outlook
	References
4 - Near-infrared-responsive gold nanoparticle-based photothermal agents: from synthesis to anticancer applications
	4.1 Introduction
	4.2 Preparation of near-infrared-responsive gold nanoparticles
		4.2.1 Preparation of near-infrared-responsive gold nanorods
		4.2.2 Preparation of near-infrared-responsive gold nanoshells
		4.2.3 Preparation of near-infrared-responsive gold nanocages and nanostars
	4.3 Near-infrared-responsive gold nanoparticle-based photothermal therapy against cancers
		4.3.1 Functionalized gold nanoparticles for improving photothermal therapy efficacy
		4.3.2 Optimizing gold nanoparticle-based photothermal therapy to fight cancer metastasis
	4.4 Gold nanoparticle-based combination therapies
		4.4.1 Gold NP-based photothermal therapy in combination with chemotherapy
		4.4.2 Gold nanoparticle-based photothermal therapy in combination with gene therapy
		4.4.3 Gold nanoparticle-based photothermal therapy in combination with photodynamic therapy
		4.4.4 Gold nanoparticle-based photothermal therapy in combination with immunotherapy
	4.5 Conclusions and remarks
	Acknowledgments
	References
5 - Dual imaging and photodynamic therapy anticancer theranostic nanoparticles
	5.1 Introduction
	5.2 Silicon and silica nanoparticles
	5.3 Graphene nanoparticles
	5.4 Polymeric nanoparticles
	5.5 Inorganic photosensitizers: titanium dioxide and SnxWO3 nanoparticles
	5.6 Copper nanoparticles
	5.7 Nanoparticles for X-ray-induced photodynamic therapy
	5.8 Gold nanoparticles
	5.9 Iron oxide nanoparticles
	5.10 Upconverting nanoparticles
	5.11 External-stimuli-activated nanoparticles
		5.11.1 Enzyme-activated nanoparticles
		5.11.2 pH-activated nanoparticles
		5.11.3 Hydrogen peroxide–activated nanoparticles
		5.11.4 Redox-responsive nanoparticles
	5.12 Conclusions
	References
6 - Upconversion nanoparticles: a toolbox for biomedical applications
	6.1 Introduction
	6.2 The synthesis
		6.2.1 Thermal decomposition
		6.2.2 Hydrothermal/solvothermal synthesis
		6.2.3 Coprecipitation
	6.3 Engineering upconverting fluorescence
		6.3.1 Mechanism of upconverting emission
		6.3.2 Tuning emission color
			6.3.2.1 Doping concentration
			6.3.2.2 Different host–dopant combinations
			6.3.2.3 Luminescence resonance energy transfer
		6.3.3 Enhancing fluorescent intensity
			6.3.3.1 Surface passivation
			6.3.3.2 Doping concentration
			6.3.3.3 Heterogeneously doping
			6.3.3.4 Surface plasmon resonance
		6.3.4 Modulating excitation wavelength
	6.4 Surface modification for biomedical applications
		6.4.1 Generating a hydrophilic surface
			6.4.1.1 Ligand exchange
			6.4.1.2 Coating a second layer of ligand
			6.4.1.3 Ligand oxidation
			6.4.1.4 Silica layer coating and silanization
		6.4.2 Bioconjugation
	6.5 Summary and outlook
	References
7 - Imaging and therapy with upconversion nanoparticles
	7.1 Introduction
	7.2 Upconverting fluorescence bioimaging
		7.2.1 Imaging and monitoring of cells
		7.2.2 Upconverting imaging of tumor targeting
		7.2.3 Upconverting fluorescence bioimaging of other tissues
	7.3 Upconversion nanoparticles as multimodal imaging nanoprobes
		7.3.1 X-ray and computed tomography imaging
		7.3.2 Magnetic resonance imaging
		7.3.3 Positron emission tomography and single-photon emission computed tomography
		7.3.4 Photoacoustic imaging
		7.3.5 Multimodal imaging techniques
	7.4 Therapeutic applications of upconversion nanoparticles
		7.4.1 Photodynamic therapy
		7.4.2 Synergistic combination of photodynamic therapy and other therapeutic modalities
		7.4.3 Other therapeutic applications with upconversion nanoparticles as light transducers
	7.5 Concluding remarks and outlook
	References
8 - Application of lanthanide-doped luminescence nanoparticles in imaging and therapeutics
	8.1 Basic theories
		8.1.1 Introduction and merits of lanthanide elements
		8.1.2 Downconversion luminescence
			8.1.2.1 Definition and characteristics
			8.1.2.2 Mechanism
				8.1.2.2.1 Nonradiative relaxation
				8.1.2.2.2 Radiation
				8.1.2.2.3 Sensitized luminescence
				8.1.2.2.4 Quantum cutting
			8.1.2.3 Example
				8.1.2.3.1 LiGdF4: Eu3+ system
				8.1.2.3.2 LiGdF4: Er3+, Tb3+ system
		8.1.3 Upconversion luminescence
			8.1.3.1 Definition and characteristics
			8.1.3.2 Mechanism
				8.1.3.2.1 Excited state absorption (two- or multistep absorption)
				8.1.3.2.2 Energy transfer upconversion
				8.1.3.2.3 Cooperative upconversion
					8.1.3.2.3.1 Photon avalanche
			8.1.3.3 Example: Yb-Er system
			8.1.3.4 Comparison
		8.1.4 Other sources to induce luminescence
			8.1.4.1 Cathodoluminescence
			8.1.4.2 Mechanoluminescence
		8.1.5 Biological properties
			8.1.5.1 Tissue penetration of radiation
				8.1.5.1.1 Traditional visible window
				8.1.5.1.2 Near-infrared window
			8.1.5.2 Cytotoxicity of lanthanide-doped nanoparticles
			8.1.5.3 Biodistribution and intracorporal circulation of lanthanide-doped nanoparticles
	8.2 Synthetic methods
		8.2.1 Introduction
		8.2.2 Methods
			8.2.2.1 Coprecipitation method
			8.2.2.2 Sol-gel method
			8.2.2.3 Pyrolysis method
			8.2.2.4 Solvothermal method
		8.2.3 Comparison
	8.3 Modification methods
		8.3.1 Introduction
		8.3.2 Luminescence adjustment
			8.3.2.1 Methods to modify luminescence intensity
				8.3.2.1.1 Coating
				8.3.2.1.2 Ion doping
					8.3.2.1.2.1 Altering the crystal field symmetry
					8.3.2.1.2.2 Modifying crystal growth
			8.3.2.2 Methods to modify luminescence color
				8.3.2.2.1 Altering the center of luminescence
				8.3.2.2.2 Altering the excitation power
				8.3.2.2.3 Altering the excitation wavelength
		8.3.3 Surface modification
			8.3.3.1 Surface ligand exchange method
			8.3.3.2 Ligand oxidation method
			8.3.3.3 Polymer encapsulation method
			8.3.3.4 Silica coating method
	8.4 Application in imaging
		8.4.1 Introduction
			8.4.1.1 Common bioimaging methods
			8.4.1.2 Lanthanide-doped nanoparticle imaging: a concise comparison
		8.4.2 Application of lanthanide-doped nanoparticles in imaging
			8.4.2.1 Monomodal imaging
				8.4.2.1.1 Photoluminescence imaging
				8.4.2.1.2 Cathodoluminescence imaging
				8.4.2.1.3 Mechanoluminescence
			8.4.2.2 Dual- and multimodal imaging
	8.5 Application in therapeutics
		8.5.1 Photodynamic therapy
			8.5.1.1 Introduction
			8.5.1.2 Photosensitizer and upconversion-photodynamic therapy
			8.5.1.3 Practical application
		8.5.2 Light-controlled drug delivery system
			8.5.2.1 Introduction
			8.5.2.2 Stimuli-responsive designs
				8.5.2.2.1 pH variance
				8.5.2.2 2 NIR radiation
		8.5.3 Theranostics
	References
9 - Photocleavable linkers: design and applications in nanotechnology
	9.1 Introduction
	9.2 Selection of light sources
	9.3 Design of photocleavable linkers
		9.3.1 Properties of ortho-nitrobenzyl linkers
		9.3.2 Properties of thioacetal ortho-nitrobenzaldehyde linkers
		9.3.3 Properties of coumarin linkers
		9.3.4 Properties of cyanine linkers
		9.3.5 Use of miscellaneous linkers
	9.4 Synthesis of photocleavable linkers
		9.4.1 Functionalization of ortho-nitrobenzyl linkers
		9.4.2 Functionalization of thioacetal ortho-nitrobenzyl linkers
	9.5 Conjugation chemistry of therapeutic agents
		9.5.1 Methotrexate
		9.5.2 Doxorubicin
		9.5.3 Paclitaxel
		9.5.4 Antibacterial agents
	9.6 Conjugation chemistry for nanoconjugates
	9.7 Concluding remarks
	Abbreviations
	Acknowledgments
	References
10 - Photocontrolled nanosystems for antitumor drug delivery
	10.1 Introduction
	10.2 Folic acid receptor
	10.3 Anticancer therapeutic agents
	10.4 Folate receptor–targeted methotrexate delivery
		10.4.1 Synthesis of generation 5(folic acid)(methotrexate–ortho-nitrobenzyl)
		10.4.2 Release kinetics of ortho-nitrobenzyl-linked methotrexate
		10.4.3 Release kinetics of generation 5(folic acid)(methotrexate–ortho-nitrobenzyl)
	10.5 Folate receptor–targeted doxorubicin delivery
		10.5.1 Synthesis of doxorubicin dendrimer conjugates
		10.5.2 Release kinetics of ortho-nitrobenzyl–linked doxorubicin
		10.5.3 Release kinetics of thioacetal ortho-nitrobenzyl–linked doxorubicin
	10.6 Summary and future perspectives
	Abbreviations
	Acknowledgments
	References
11 - Photocontrolled nanosystems for antibacterial drug delivery
	11.1 Introduction
	11.2 Targeting ligands for bacterial cells
		11.2.1 Gram(+) bacteria
		11.2.2 Gram(−) bacteria
	11.3 Design of bacteria-targeting nanosystems
		11.3.1 Multivalent ligand strategy
		11.3.2 Gram(+) cells
			11.3.2.1 Cell wall peptide
			11.3.2.2 Penicillin-binding protein
			11.3.2.3 Phospholipids and teichoic acid
		11.3.3 Gram(−) cells
			11.3.3.1 Lipopolysaccharide
			11.3.3.2 Phospholipids
			11.3.3.3 Lectins
	11.4 Nanodelivery systems for therapeutic applications
		11.4.1 Photocontrolled drug release
			11.4.1.1 Nontargeted release
			11.4.1.2 Lipopolysaccharide targeted release
		11.4.2 Antibacterial photodynamic therapy
			11.4.2.1 Nontargeted photodynamic therapy
			11.4.2.2 Targeted photodynamic therapy
			11.4.2.3 Upconversion nanocrystal–enabled photodynamic therapy
		11.4.3 Antibacterial photothermal therapy
			11.4.3.1 Nontargeted photothermal therapy
			11.4.3.2 Targeted photothermal therapy
	11.5 Conclusion and future perspectives
	Abbreviations
	Acknowledgments
	References
12 - Upconversion nanocrystals for near-infrared-controlled drug delivery
	12.1 Introduction
	12.2 Luminescence bands for therapeutic applications
		12.2.1 Visible bands
		12.2.2 Ultraviolet bands
	12.3 Strategies of upconversion nanocrystal integration for therapeutic applications
		12.3.1 Core-shell approach
		12.3.2 Encapsulation approach
		12.3.3 Conjugation approach
	12.4 Modular integration of upconversion nanocrystals for folate receptor–targeted delivery
		12.4.1 Design of doxorubicin–linker constructs
		12.4.2 Folate receptor–targeting G5 dendrimers
		12.4.3 Modular integration to upconversion nanocrystal @(G5FA)
		12.4.4 Upconversion nanocrystal @(doxorubicin-ortho-nitrobenzyl) (G5FA)
		12.4.5 Upconversion nanocrystal @mSiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA)
	12.5 Near-infrared imaging of upconversion nanocrystal nanocomposites
		12.5.1 Upconversion nanocrystal @(G5FA)
		12.5.2 Upconversion nanocrystal @mSiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA)
	12.6 Near-infrared-controlled induction of cytotoxicity
		12.6.1 Upconversion nanocrystal @(doxorubicin-ortho-nitrobenzyl) (G5FA)
		12.6.2 Upconversion nanocrystal @SiO2-protoporphyrin IX @(doxorubicin-thioacetal ortho-nitrobenzaldehyde) (G5FA)
	12.7 Conclusion and future perspectives
	Abbreviations
	Acknowledgments
	References
Appendices
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران