دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Su-Ting Han (editor). Ye Zhou (editor)
سری: Woodhead Publishing Series in Electronic and Optical Materials
ISBN (شابک) : 012819717X, 9780128197172
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 350
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 38 مگابایت
در صورت تبدیل فایل کتاب Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing (Woodhead Publishing Series in Electronic and Optical Materials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حافظههای غیرفرار فوتو الکترواکتیو برای ذخیرهسازی دادهها و محاسبات نورومورفیک (مجموعه انتشارات Woodhead در مواد الکترونیکی و نوری) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حافظههای غیرفرار فوتو الکترواکتیو برای ذخیرهسازی دادهها و محاسبات نورومورفیک پیشرفتها در توسعه حافظههای فوتو الکترواکتیو و سیستمهای محاسباتی نورومورفیک را خلاصه میکند، راهحلهای ممکن را برای چالشهای طراحی دستگاه پیشنهاد میکند و ارزیابی میکند. چشم انداز برنامه های کاربردی تجاری بخشها پیشرفتها در حافظه الکتروفتواکتیو و محاسبات نورومورفیک فوتونیکی و درون حافظه را پوشش میدهند، از جمله بحثهایی در مورد مفاهیم طراحی، اصول عملیات و مکانیسم ذخیرهسازی اولیه دستگاههای حافظه اپتوالکترونیک، مواد بالقوه از مولکولهای آلی، نقاط کوانتومی نیمه هادی تا مواد دو بعدی با خواص الکتریکی و نوری مطلوب، چالش های دستگاه و استراتژی های ممکن.
این کتاب جامع، در دسترس و به روز مورد توجه دانشجویان فارغ التحصیل و محققین الکترونیک حالت جامد خواهد بود. این یک مقدمه سیستماتیک ارزشمند برای ویژگی های حافظه، اصول عملکرد و مکانیسم های ذخیره سازی آخرین دستگاه های حافظه الکترو فوتواکتیو گزارش شده است.
Photo-Electroactive Non-Volatile Memories for Data Storage and Neuromorphic Computing summarizes advances in the development of photo-electroactive memories and neuromorphic computing systems, suggests possible solutions to the challenges of device design, and evaluates the prospects for commercial applications. Sections covers developments in electro-photoactive memory, and photonic neuromorphic and in-memory computing, including discussions on design concepts, operation principles and basic storage mechanism of optoelectronic memory devices, potential materials from organic molecules, semiconductor quantum dots to two-dimensional materials with desirable electrical and optical properties, device challenges, and possible strategies.
This comprehensive, accessible and up-to-date book will be of particular interest to graduate students and researchers in solid-state electronics. It is an invaluable systematic introduction to the memory characteristics, operation principles and storage mechanisms of the latest reported electro-photoactive memory devices.
Cover Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing Copyright Contents List of contributors Preface 1 Introduction to photo-electroactive nonvolatile memory References 2 Characteristics and mechanisms in resistive random-access memory 2.1 Resistive random-access memory concept 2.2 Resistive random-access memory materials 2.3 Resistive random-access memory mechanisms 2.3.1 Electrochemical metallization 2.3.1.1 Switching kinetics Electrochemical reactions Drift and diffusion Crystallization 2.3.1.2 Single or multiple filaments Single filament Multiple filaments 2.3.1.3 Filament overgrowth 2.3.1.4 Filament undergrowth 2.3.2 Valence-change mechanism 2.3.2.1 Point defects in valence-change mechanism devices 2.3.2.2 Oxygen exchange in valence-change mechanism device 2.3.2.3 Eight-wise and counter-eight-wise valence-change mechanism 2.3.3 Thermochemical mechanism 2.3.4 Electrostatic/electronic effects 2.3.4.1 Space-charge-limited conduction 2.3.4.2 Metal-insulator transition 2.3.4.3 Poole–Frenkel emission References 3 Memory characteristics and mechanisms in transistor-based memories 3.1 Introduction 3.2 The basic structures and working principles of transistor memories 3.2.1 Memory window 3.2.2 Memory on/off current ratio 3.2.3 Programming/erasing cyclic endurance property 3.2.4 Time-dependent data storage retention capability 3.3 The typical nonvolatile transistor memories 3.3.1 Floating-gate transistor memories 3.3.1.1 Electrode design 3.3.1.2 Active layer design 3.3.1.3 Tunneling/blocking dielectric layer design 3.3.1.4 Floating gate design 3.3.2 Charge-trap transistor memories 3.3.2.1 Electret layer design 3.3.3 Ferroelectric field-effect transistor memories 3.3.3.1 Ferroelectret layer design 3.4 Summary and prospect References 4 Two-terminal optoelectronic memory device 4.1 Introduction 4.2 Microscopic mechanism 4.2.1 Interfacial barrier 4.2.2 Filament formation/dissolution 4.2.3 Charge trapping/detrapping 4.2.4 Conformation evolution 4.3 Optoelectronic memristor for memory and photonic computing 4.3.1 Multilevel storage 4.3.2 Logic operations 4.3.3 Vision sensors 4.4 Optoelectronic memristor for emulating synaptic functions 4.4.1 Photoactivated synaptic functions 4.4.2 Optogenetics-inspired tunable synaptic functions 4.5 Prospects and challenges References 5 Three-terminal optoelectronic memory device 5.1 Introduction 5.2 The working mechanism of three-terminal optoelectronic memory device 5.3 The development of three-terminal optoelectronic memory device 5.4 Organic semiconductors based on different device structures 5.5 Two-dimensional transition metal dichalcogenide based on various device structures 5.6 Flexible three-terminal optoelectronic memory device 5.7 Conclusion References 6 Synaptic devices based on field-effect transistors 6.1 Introduction 6.2 State-of-the-art synaptic transistors 6.2.1 Floating-gate synaptic transistors 6.2.2 Ferroelectric-gate synaptic transistors 6.2.3 Electrolyte-gate synaptic transistors 6.2.4 Optoelectronic synaptic transistors 6.3 Summary and outlook References 7 Ionic synergetically coupled electrolyte-gated transistors for neuromorphic engineering applications 7.1 Introduction 7.2 Neural network and neuromorphic engineering 7.2.1 Neuron and synapse 7.2.2 Neuromorphic engineering and neuromorphic devices 7.3 Electrolyte-gated neuromorphic transistors 7.3.1 Electrolyte-gated transistors 7.3.2 Ionic liquid electrolyte-gated neuromorphic transistors 7.3.3 Solid-state ionic conductor gated neuromorphic transistors 7.3.4 Metaplasticity mimicked on electrolyte-gated neuromorphic transistors 7.3.5 Hodgkin–Huxley artificial synaptic membrane 7.4 Electrolyte-gated neuromorphic transistor-based artificial tactile sensory systems 7.4.1 External-powered electrolyte-gated transistor–integrated artificial tactile sensory systems 7.4.2 Self-powered EGT-based artificial tactile sensory systems 7.5 Multigate neuromorphic transistors and dendrite integration 7.5.1 Dendritic integration 7.5.2 Neuronal arithmetic 7.5.3 Orientation selectivity 7.6 Conclusions and outlook Acknowledgments References 8 One-dimensional materials for photoelectroactive memories and synaptic devices 8.1 Introduction 8.2 Synthesis of 1D materials 8.2.1 Synthesis of inorganic 1D material 8.2.2 Synthesis of organic 1D material 8.2.3 Others 8.3 Device fabrication 8.4 Application in photoelectroactive memory 8.4.1 Inorganic 1D material-based photoelectroactive memory 8.4.1.1 Two-terminal memory device Single 1D material photoelectroactive memory device 1D material array photoelectroactive memory device 8.4.1.2 Three-terminal memory device 8.4.2 Organic 1D material 8.4.3 Others 8.5 Application in photoelectroactive synaptic device 8.5.1 Inorganic 1D material-based photoelectroactive synaptic device 8.5.1.1 Two-terminal synaptic device 8.5.1.2 Three-terminal synaptic device 8.5.2 Organic 1D material 8.5.3 Others 8.6 Conclusion References 9 Novel photoelectroactive memories and neuromorphic devices based on nanomaterials 9.1 Introduction 9.1.1 The demand for developing photoelectroactive memories for data storage and neuromorphic computing 9.1.2 Some basics for biosynapse 9.2 Trapping-based photoelectroactive devices 9.2.1 Si NC-based optical synaptic devices 9.2.1.1 Device fabrication 9.2.1.2 Working principle 9.2.1.3 Device performance 9.2.1.4 Discussion 9.2.2 CNT-based devices for photoelectroactive memory 9.2.2.1 Device fabrication 9.2.2.2 Working principle 9.2.2.3 Device performance 9.2.2.4 Discussion 9.3 Migration-based devices 9.3.1 2D tunneling phototransistor for nonvolatile memory 9.3.1.1 Device fabrication 9.3.1.2 Working principle 9.3.1.3 Device performance 9.3.1.4 Discussion 9.3.2 Perovskite device as artificial eye 9.3.2.1 Device fabrication 9.3.2.2 Working principle 9.3.2.3 Device performance 9.3.2.4 Further discussion 9.4 Other photoelectroactive devices 9.5 Prospect and challenge Acknowledgments References 10 Organic and hybrid photoelectroactive polymer for memories and neuromorphic computing 10.1 Introduction 10.2 Organic optoelectronic materials 10.2.1 Photochromic materials 10.2.2 Photoconductive semiconductors 10.2.3 Electrochromic materials 10.3 Optoelectronic memory device 10.3.1 Resistive random access memory 10.3.2 Optical organic field-effect transistor memory 10.3.3 Optoelectronic logic gates 10.4 Artificial synapses 10.5 Conclusion Acknowledgement References 11 Metal oxide materials for photoelectroactive memories and neuromorphic computing systems 11.1 Introduction 11.2 Optoelectronic memristor 11.2.1 Structure of the optoelectronic memristor devices 11.2.2 I–V curves characteristics and light response 11.2.3 Photoelectric response 11.2.4 Schematic of photoelectric memristor devices 11.3 Optogenetic tunable memristors for Boolean logic and synaptic functions 11.3.1 Optoelectronic Boolean logic 11.3.2 Neuromorphic computing 11.3.3 Image memorization, preprocessing, and simulation of image recognition 11.4 Challenge and possible approaches 11.4.1 Challenge 11.4.2 The possible approaches Acknowledgements Conflict of interest References 12 Perovskites for phototunable memories and neuromorphic computing 12.1 Introduction 12.2 Perovskite halides-based three-terminal phototunable flash memory 12.3 Perovskite halides-based two-terminal phototunable RRAM 12.4 Perovskite halides-based neuromorphic computing 12.5 Conclusion References 13 Chalcogenide materials for optoelectronic memory and neuromorphic computing 13.1 Introduction and history 13.2 Basic properties of phase change materials 13.2.1 Long-range and short-range order of phase change materials 13.2.2 Switching kinetics 13.2.3 Optical property of the phase change materials 13.3 Application of phase change materials in optoelectronic nonvolatile memory 13.3.1 Rewritable optical disk 13.3.2 Electronic phase change memory 13.3.3 All-photonic memory 13.4 Applications of phase change memory in neuromorphic computing 13.4.1 Phase change memories for artificial neural networks 13.4.2 Phase change memory in optoelectronic neuromorphic systems 13.5 Conclusion References 14 Device challenges, possible strategies, and conclusions 14.1 Preparation of photoelectroactive materials 14.1.1 Material stability and thin-film fabrication technology 14.1.2 Optical modulation 14.1.3 Biodegradability and biocompatibility 14.2 Device performance optimization 14.2.1 Device variability 14.2.2 Switching speed 14.2.3 Integration 14.3 Advanced approaches for switching mechanism 14.4 Neuromorphic computing 14.4.1 Number of conductance states 14.4.2 Sensory synapse References Index Back Cover