دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Woogeun Rhee (editor)
سری: Materials, Circuits and Devices
ISBN (شابک) : 1785618857, 9781785618857
ناشر: The Institution of Engineering and Technology
سال نشر: 2020
تعداد صفحات: 737
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 58 مگابایت
در صورت تبدیل فایل کتاب Phase-Locked Frequency Generation and Clocking: Architectures and circuits for modern wireless and wireline systems (Materials, Circuits and Devices) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تولید و کلاک شدن فرکانس قفل شده با فاز: معماری ها و مدارهای سیستم های بی سیم و سیم مدرن () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تولید و زمان بندی فرکانس قفل شده در فاز موضوعات و مسائل ضروری در طراحی حلقه قفل فاز کنونی را پوشش می دهد، از لمس ملایم اصول تا جنبه های طراحی عملی. هر دو سیستم بی سیم و سیمی در طراحی سیستم های تولید فرکانس کم نویز و کلاکینگ در نظر گرفته می شوند. موضوعات تحت پوشش عبارتند از معماری و طراحی، حلقههای قفلشده فاز دیجیتال، تولید و مدولاسیون فرکانس کم نویز، بازیابی ساعت و دادهها، و سیستمهای کلاک پیشرفته و تولید ساعت.
این کتاب نه تنها به بحثهای اساسی میپردازد. معماریها، ملاحظات طراحی سیستم، و بلوکهای ساختمانی کلیدی، اما تکنیکها و معماریهای پیشرفته طراحی در سیستمهای تولید فرکانس و کلاکینگ را نیز پوشش میدهد. خوانندگان می توانند انتظار داشته باشند که بینشی در مورد ساعت قفل فاز و همچنین دیدگاه های سیستم و جنبه های طراحی مدار در طراحی مدرن فاز قفل شده به دست آورند.
Phase-Locked Frequency Generation and Clocking covers essential topics and issues in current Phase-Locked Loop design, from a light touch of fundamentals to practical design aspects. Both wireless and wireline systems are considered in the design of low noise frequency generation and clocking systems. Topics covered include architecture and design, digital-intensive Phase-Locked Loops, low noise frequency generation and modulation, clock-and-data recovery, and advanced clocking and clock generation systems.
The book not only discusses fundamental architectures, system design considerations, and key building blocks but also covers advanced design techniques and architectures in frequency generation and clocking systems. Readers can expect to gain insights into phase-locked clocking as well as system perspectives and circuit design aspects in modern Phase-Locked Loop design.
Cover Contents About the editor Part I: Basic architectures and system perspectives 1 Evolution of monolithic phase-locked loops 1.1 Overview 1.2 Architectures and circuits 1.2.1 PLL with PFD and charge pump 1.2.2 PLL with ring VCO 1.2.3 PLL with dual-path control 1.2.4 Delay-locked loop 1.2.5 Bang-bang PLL 1.2.6 Delta-sigma fractional-N PLL 1.2.7 Digital-intensive PLL 1.2.8 LC VCO 1.2.9 Frequency divider 1.3 Application aspects 1.3.1 Synchronization 1.3.2 Clock generation 1.3.3 Clock-and-data recovery 1.3.4 Frequency synthesis and modulation 1.4 Summary Acknowledgments References 2 Fractional-N frequency synthesis 2.1 Basics 2.1.1 Fractional-N operation 2.1.2 Excess phase noise 2.1.3 Delta-sigma fractional-N PLLs 2.1.3.1 Model of excess phase in a delta-sigma fractional-N PLL 2.1.4 Applications 2.1.5 Challenges 2.2 Digital delta-sigma modulator design 2.2.1 Modulator order 2.2.2 DDSM architecture 2.2.3 Dithering 2.3 Circuit design issues 2.3.1 PFD and CP 2.3.1.1 Increased charge pump noise contribution 2.3.1.2 PFD/CP non-linearity 2.3.2 Multi-modulus frequency dividers 2.4 Wideband fractional-PLLs 2.4.1 Phase noise cancellation 2.4.1.1 Handling high dynamic range of cancellation path 2.4.1.2 Matching the main and cancellation paths 2.4.2 Multi-phase fractional-N PLLs 2.5 Conclusion References 3 Clock data recovery: a system perspective 3.1 Basic communication system 3.2 Clock data recovery 3.2.1 Phase detector 3.2.2 Closed-loop response 3.2.3 Latency considerations 3.2.4 Update rate 3.2.5 Jitter tolerance 3.3 Timing function selection 3.3.1 Alexander phase detector 3.3.2 Mueller-Müller phase detector 3.3.3 Timing function analysis 3.4 Eye diagram 3.4.1 Statistical eye construction 3.4.2 Tri-bit eye diagram 3.5 An optimization example 3.6 Conclusion References 4 Silicon-based THz frequency synthesizers with wide locking range 4.1 Architecture of the THz frequency synthesizer 4.2 Triple-push VCO with CAV 4.3 Three-phase injection locked divider (÷4) 4.4 Integration and layout of VCO and divider 4.5 Measurement 4.6 Conclusion References Part II: Digital-intensive phase-locked loops 5 Time-to-digital converters 5.1 Introduction 5.2 Time–digital conversion basis 5.2.1 Time–digital conversion key parameters 5.2.1.1 Basic structural parameters 5.2.1.2 Performance specifications 5.3 Time–digital converter architectures 5.3.1 Counter-based TDC 5.3.2 Analog-to-digital conversion-based TDC 5.3.3 Flash (single delay line) TDC 5.3.4 Vernier delay line TDC 5.3.5 Vernier ring TDC 5.3.6 Oversampling gated ring oscillator (GRO) TDC 5.3.7 Time amplifier-based TDC 5.4 Advanced time-to-digital conversion techniques 5.4.1 Linearity issues associated with 2-D Vernier TDC 5.4.2 Spiral comparator array for 2-dimensional Vernier TDC 5.4.3 Linearization improvement techniques 5.4.3.1 Delay interpolation of unit delay cells 5.4.3.2 2-D comparator array folding error randomization 5.4.3.3 TDC delay calibration 5.5 TDC implementation examples 5.5.1 TDC architecture and circuit implementation 5.5.2 Experiment results of the proposed TDC References 6 Bang-bang digital PLLs for wireless systems 6.1 Analysis of digital PLLs 6.1.1 Standard TDC 6.1.2 Moving to BB operation 6.2 Fractional-N frequency synthesis 6.3 Fast lock in BB PLLs 6.4 Automatic bandwidth regulation 6.5 Practical implementations and measurements 6.6 Conclusions References 7 Hybrid PLLs 7.1 Introduction: analog and digital PLL considerations 7.2 Hybrid VCO control with continuous tuning 7.3 Frac-N noise cancellation in a digital-friendly technology 7.4 Conclusion References 8 Spur mitigation techniques for DPLL architecture 8.1 Introduction 8.2 The impact of spurious tones 8.2.1 Specification of spurious performances in a wireless system 8.2.2 Specification of spurious performances in a wireline system 8.3 The generation of DPLL spurs 8.3.1 Internal spurs due to fractional-N operation 8.3.2 Internal spurs due to integer-N operation 8.3.3 External spurs due to interferences 8.4 DSP-assisted spur mitigation techniques leveraging the adaptive filter algorithm 8.4.1 Adaptive spur mitigation algorithm 8.4.2 I/Q correlator: minimization of residue error energy 8.4.3 Convergence of the spur mitigation scheme 8.5 Design example 8.5.1 DPLL with a direct spur mitigation technique 8.5.1.1 Overall DPLL architecture 8.5.1.2 Feedforward multi-tone spur cancellation scheme 8.5.1.3 Derivation of the cancellation algorithm 8.5.1.4 Integer and fractional delay 8.5.1.5 Complete feedforward loop and adaptability 8.5.1.6 Implementation highlight: integer and fractional averaging scheme 8.5.1.7 Modular extension: cascaded cancellation loops 8.5.1.8 Measurement results 8.5.2 DPLL with a dither-based spur mitigation technique 8.5.2.1 Overall DPLL architecture 8.5.2.2 Dither noise cancellation scheme 8.5.2.3 Implementation highlight: dither noise cancellation loop 8.5.2.4 Measurement results 8.6 Conclusion References 9 Fully synthesized digital PLL 9.1 Design process 9.1.1 Digital-compatible design flow 9.1.2 Hardware description language-based circuit design 9.2 PLL architecture 9.2.1 Proposed PLL architecture 9.3 Design example I: injection-locked PLL with an interpolative phase-coupled oscillator 9.3.1 Interpolative phase-coupled oscillator 9.3.2 Current-output DAC converter 9.3.3 Standard-cell-based varactor 9.3.4 Gated edge injection 9.3.5 Measurement results 9.4 Design example II: injection-locked PLL with bang-bang phase detector-based frequency and phase calibration 9.4.1 PLL architecture and noise analysis 9.4.2 Highly linear DCO with self-clocked nonoverlap update 9.4.3 Fully symmetrical low-offset MUX and SS-BBPD design 9.4.4 Measurement results 9.5 Summary and conclusion References 10 Ultra-low-power ADPLL 10.1 Introduction 10.2 Requirements and architecture considerations for low-power ADPLL 10.2.1 Phase noise and spur considerations for IoT applications 10.2.2 Low-power fractional ADPLL architectures 10.2.3 DTC for low-power ADPLL 10.2.3.1 Variable SR (variable-slope) DTC 10.2.3.2 Variable starting voltage (constant-slope) DTC 10.2.3.3 Variable threshold (ramp division) DTC 10.3 Proposed ULP ADPLL architecture 10.3.1 System overview 10.3.2 Low-power highly linear DTC 10.3.2.1 Concept operation 10.3.2.2 Nonlinear sources and circuit implementations 10.3.2.3 Simulation results 10.3.3 Narrow-range high-resolution TDC 10.3.4 Coarse DPLL 10.4 Measurement results 10.5 Conclusion References Part III: Low-noise frequency generation and modulation 11 Integrated LC oscillators 11.1 LC oscillator design challenges in RF transceivers 11.1.1 WiFi, Bluetooth low energy, and Internet of things 11.1.1.1 WiFi IEEE 802.11 11.1.1.2 Bluetooth low energy 11.1.1.3 Narrowband IoTs 11.1.2 4G Long-term evolution and 5G NR 11.2 LC oscillator principles of operation 11.2.1 Oscillator start-up condition, frequency tuning, and phase noise 11.2.1.1 Start-up condition 11.2.1.2 Frequency tuning 11.2.1.3 Phase noise 11.2.2 Topology comparison of NMOS VCO and CMOS VCO 11.3 Wideband LC oscillator 11.3.1 Switchable inductor oscillator design 11.3.2 Multi-resonator oscillator design 11.3.3 Dual-mode oscillator design 11.4 Low-noise and low-power LC oscillator 11.4.1 Coupled oscillator 11.4.2 Class C oscillator 11.4.3 Class F Oscillator References 12 Mm-wave and sub-THz CMOS VCOs 12.1 Introduction 12.2 Magnetic tuning technique 12.2.1 Coarse magnetic tuning 12.2.2 Fine magnetic tuning 12.2.2.1 Fine magnetic tuning with variable capacitor 12.2.2.2 Fine magnetic tuning with variable resistor 12.2.2.3 Fine magnetic tuning with variable transistor 12.2.3 Coarse and fine magnetic tuning 12.2.4 Fine magnetic tuning with split transformer 12.3 Design prototypes 12.3.1 Coarse magnetic tuning multi-mode VCO 12.3.2 Coarse and fine magnetic tuning DB-VCO 12.3.3 Fine magnetic tuning split transformer-based VCO 12.4 Conclusion References 13 Ultra-low phase noise ADPLL for millimeter wave 13.1 Evolution of mm-wave frequency synthesizer architectures 13.2 Mm-wave ADPLL with implicit frequency tripling 13.3 Oscillator with implicit frequency multiplication 13.3.1 Third-harmonic boosting 13.3.2 Suppression of 1/f3 noise in oscillators 13.3.3 DCO capacitor bank design 13.4 The 20-GHz component suppression 13.5 Phase detection 13.6 Digital LF 13.7 Experimental results 13.7.1 Open-loop test 13.7.2 Close-loop test References 14 DTC-based subsampling PLLs for low-noise synthesis and two-point modulation 14.1 Fractional-N subsampling PLL enabled by a DTC 14.1.1 Limitations introduced by the DTC and their mitigation on the system level 14.1.1.1 DTC resolution 14.1.1.2 DTC gain error 14.1.1.3 DTC nonlinearity 14.1.1.4 DTC phase noise 14.2 Subsampling PLL-based phase modulator enabled by a DTC 14.2.1 Two-point modulation 14.2.2 Limitations of the technique and their mitigation on the system level 14.3 Analog circuits 14.3.1 Digital-to-time converter 14.3.2 Subsampling loop 14.3.3 VCO implementation 14.3.4 Frequency acquisition 14.4 Experimental results 14.5 Conclusion References 15 Hybrid two-point modulation with 1b high-pass modulation and embedded FIR filtering 15.1 Introduction 15.2 Hybrid two-point modulation with embedded FIR filter 15.2.1 Semi-digital PLL with hybrid FIR filtering 15.2.2 Dedicated high-pass modulation path with FIR-embedded 1-bit control 15.2.3 Linear model of the hybrid loop two-point modulator 15.2.4 Gain and delay mismatch analysis and calibration 15.3 Circuit implementation 15.4 Implement results 15.5 Conclusion References Part IV: Clock-and-data recovery and clocking 16 An overview of CDR in ultra-high-speed wireline transceivers 16.1 Introduction 16.2 CDR in SerDes 16.3 Requirements and approaches for CDR in ultra-high-speed wireline transceivers 16.4 CDR for NRZ modulation scheme 16.5 CDR for PAM-4 modulation scheme 16.6 Conclusion References 17 Clock and data recovery for optical links 17.1 Prior art of BMCDR 17.2 BMCDR with jitter filtering 17.3 Burst mode CDR circuit implementation 17.3.1 Lock detector 17.3.2 Reconfigurable loop filter 17.3.3 Selective gating VCO 17.3.4 An 1/5-rate phase detector 17.3.5 Dual-mode loop filter 17.3.6 Burst mode CDR experimental results 17.4 Fully integrated optical receiver with baud-rate CDR 17.5 Architecture of optical receiver with baud-rate CDR 17.6 Circuit implementation of optical receiver with baud-rate CDR 17.6.1 Current amplifier 17.6.2 Comparator 17.6.3 Baud-rate PD 17.6.4 Charge mode logic subtractor 17.6.5 Hybrid loop filter and phase interpolator 17.6.6 Experimental results of optical receiver with baud-rate CDR 17.7 Conclusion References 18 Digital clock and data recovery circuits 18.1 Introduction 18.2 Design and analysis of digital CDR 18.2.1 Bang-bang phase detector (BBPD) 18.2.2 Digital loop filter (DLF) 18.2.3 Digital-to-analog converter 18.2.4 Voltage controlled oscillator 18.2.5 Noise analysis of a digital CDR 18.2.5.1 Design example 18.3 Design techniques for improving standard digital CDR 18.3.1 Low-speed digital loop filter 18.3.2 Digital frequency control in oscillators 18.3.3 Digitally controlled oscillator (DCO) 18.3.4 Decoupling JTRAN and JTRACK bandwidth in CDR 18.4 Case study I: digital CDR with decoupled JTRAN and JTRACK 18.4.1 A 5 Gb/s digital CDR using PRPLL 18.4.1.1 Linear analysis of PRPLL-based digital CDR 18.5 Case study II: A wide range digital clock and data recovery 18.5.1 A 4–10 Gb/s digital clock and data recovery 18.5.2 Fractional-N PLL-based DCO 18.5.3 Digitally controlled delay line 18.5.4 Linear analysis of a wide range CDR References 19 Spread spectrum clock generator: a low-cost EMI solution 19.1 Methods for electromagnetic interference (EMI) reduction 19.2 Spread spectrum clock generation (SSCG): a cost-effective EMI solution 19.3 Design approaches for SSCG 19.3.1 PLL-based SSCG 19.3.1.1 Analog PLL 19.3.1.2 Digital PLL 19.3.2 Delay-line-based SSCG 19.3.3 FLL-based SSCG 19.4 Methodologies for the SSC modulation profile 19.4.1 Sinusoidal modulation profile 19.4.2 Triangular modulation profile 19.4.3 PLL-bandwidth-compensated triangular modulation 19.4.4 Hershey–Kiss modulation profile 19.4.5 Newton–Raphson modulation profile 19.4.6 Piecewise-linear modulation profile 19.4.7 Random modulation profile 19.4.8 Nested modulation profile 19.5 Conclusions References 20 High-performance CMOS clock distribution 20.1 Introduction 20.1.1 Sources of jitter in clock distribution 20.1.2 CMOS clocking for broadband clock distribution 20.2 Power supply induced jitter (PSIJ) in the CMOS inverter 20.2.1 Jitter sensitivity 20.2.2 Jitter induced by common-mode and differential supply noise 20.2.3 PSIJ accumulation 20.3 Random jitter generation in the CMOS inverter 20.3.1 Random jitter trend 20.4 Jitter generation in global clock distribution 20.4.1 Model of a CMOS inverter driving a low-loss transmission line 20.4.2 Design of CMOS clock distribution with low jitter generation 20.4.3 Example: jitter generation in 16 nm CMOS clock distribution 20.4.3.1 PSIJ 20.4.3.2 Random jitter 20.5 Jitter amplification 20.5.1 Jitter impulse response (JIR) and jitter transfer function (JTF) 20.5.2 JIR and JTF for a cascade of clock buffers 20.5.3 Design of CMOS clock distribution with low jitter amplification 20.6 Summary References Part V: Advanced clock/frequency generation 21 Sub-sampling PLL techniques 21.1 Classical charge pump PLL 21.2 PLL figure-of-merit 21.3 Sub-sampling PLL 21.4 Power and spur reduction techniques for sub-sampling PLL 21.5 Fractional-N sub-sampling PLL 21.6 Digital sub-sampling PLL 21.7 Discussion References 22 PLLs with nested frequency-locked loop 22.1 VCO noise reduction using reference-less FLL 22.1.1 Basic concept 22.1.2 Implementation and simulation 22.2 Frequency-locked loop based on a switched capacitor feedback 22.2.1 Basic concept 22.2.2 Loop dynamics 22.2.3 Noise analysis 22.2.4 Circuit implementation 22.3 A supply noise insensitive PLL with a rail-to-rail swing ring oscillator and a wideband noise suppression loop 22.3.1 Motivation 22.3.2 Wide bandwidth noise suppression loop (NSL) 22.3.3 PLL with noise suppressed VCO 22.3.4 Experimental results 22.4 Conclusions References 23 Time amplified charge pump PLL 23.1 Noise of a digital charge-pump PLL 23.1.1 Noise induced by dead-zone cancellation 23.1.2 Noise induced by static phase error 23.1.3 Noise transfer function of a charge pump 23.2 Time amplified PLL 23.3 Low-noise time amplifier 23.4 Self-regulated and self-temperature compensation ring oscillator 23.5 Ring oscillator-based TAPLL 23.6 Measurements of ring TAPLL References 24 Multiplying DLLs 24.1 Introduction 24.2 Advanced frequency-tracking loop 24.3 Wideband multiplexed RVCO and frequency tuning scheme 24.4 Phase noise analysis 24.5 Performance comparison References 25 Wideband PLLs 25.1 Wideband integer-RF synthesizer RF synthesizer 25.1.1 PLL bandwidth limitations 25.1.2 Proposed integer-wideband PLL wideband PLL 25.1.2.1 Type-I PLL with sampling filter 25.1.2.2 MSSF transfer function 25.1.2.3 Stability considerations 25.1.2.4 Closed-loop behavior 25.1.2.5 Acquisition range 25.1.3 Phase noise considerations 25.1.3.1 V3CO phase noise 25.1.3.2 PD and MSSF phase noise 25.1.4 Spur reduction 25.1.4.1 Harmonic trap design 25.1.4.2 Notch calibration 25.1.5 Experimental results of integer-synthesizer 25.2 Wideband fractional-RF synthesizer RF synthesizer 25.2.1 Background 25.2.2 Proposed noise suppression method 25.2.2.1 Basic idea 25.2.2.2 FIR implementation 25.2.2.3 Filter frequency response 25.2.2.4 Effect of nonidealities 25.2.3 Proposed synthesizer architecture 25.2.4 Design considerations 25.2.4.1 Nonlinearity issues 25.2.4.2 Delay line implementation 25.2.4.3 PD nonmonotonicity 25.2.4.4 Overall phase noise 25.2.5 Experimental results of fractional-synthesizer References Index Back Cover