ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pharmaceutical Biotechnology: A Focus on Industrial Application

دانلود کتاب بیوتکنولوژی دارویی: تمرکز بر کاربرد صنعتی

Pharmaceutical Biotechnology: A Focus on Industrial Application

مشخصات کتاب

Pharmaceutical Biotechnology: A Focus on Industrial Application

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781032013749, 1032013745 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 401 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Pharmaceutical Biotechnology: A Focus on Industrial Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بیوتکنولوژی دارویی: تمرکز بر کاربرد صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بیوتکنولوژی دارویی: تمرکز بر کاربرد صنعتی

بیوتکنولوژی دارویی: تمرکز بر کاربرد صنعتی توسعه بیوداروهای جدید و همچنین بهبود آنهایی که تولید می شوند را پوشش می دهد. هدف اصلی ارائه پیشینه و مفاهیم مرتبط با بیوتکنولوژی دارویی، همراه با دیدگاه صنعتی است. این یک متن جامع برای دانشجویان کارشناسی، فارغ التحصیلان و دانشگاهیان در بیوشیمی، فارماکولوژی و بیو داروسازی، و همچنین متخصصانی است که در زمینه بین رشته ای بیوتکنولوژی دارویی کار می کنند. این کتاب که با در نظر گرفتن مربیان نوشته شده است، مطالبی را در اختیار معلمان قرار می دهد تا کلاس های خود را تقویت کنند و به دانش آموزان و سایر خوانندگان متنی آسان برای خواندن ارائه می دهد که مراحل گام به گام توسعه بیوداروهای جدید را بررسی می کند. ویژگی ها: در رابطه با فرآیندهای جدید و همچنین فرآیندهای سنتی، نکات خاصی را با اهمیت فعلی مورد بحث قرار می دهد به عملیات واحد اصلی مورد استفاده در صنعت بیودارویی مانند بالادست و پایین دست می پردازد شامل فصل هایی است که امکان ارزیابی گسترده ای از فرآیند تولید را فراهم می کند دکتر آدالبرتو پسوا جونیور استاد کامل دانشکده علوم دارویی دانشگاه سوپائولو و استاد ارشد مدعو در کینگز کالج لندن است. او دارای تجربه در فناوری آنزیم و تخمیر و در فرآیندهای خالص سازی محصولات بیوتکنولوژیکی مانند استخراج مایع-مایع، فیلتراسیون جریان متقاطع و کروماتوگرافی مورد علاقه در صنایع دارویی و غذایی است. دکتر میشل ویتولو استاد کامل دانشکده علوم دارویی دانشگاه سوپائولو است. او دارای تجربه در فناوری آنزیم، در تکنیک های بی حرکت (با هدف استفاده مجدد از بیوکاتالیست) و در بهره برداری از راکتورهای غشایی برای به دست آوردن محصولات بیوتکنولوژیکی مورد علاقه در صنایع دارویی، شیمیایی و غذایی است. دکتر پل اف. لانگ، استاد بیوتکنولوژی در کالج کینگ لندن و استاد پژوهشی بین المللی در دانشگاه سوپائولو است. او با آموزش میکروبیولوژیست است و تحقیقات او از ترکیب بیوانفورماتیک، آزمایشگاهی و مطالعات میدانی برای کشف داروهای جدید از طبیعت، به ویژه از محیط های دریایی استفاده می کند.


توضیحاتی درمورد کتاب به خارجی

Pharmaceutical Biotechnology: A Focus on Industrial Application covers the development of new biopharmaceuticals as well as the improvement of those being produced. The main purpose is to provide background and concepts related to pharmaceutical biotechnology, together with an industrial perspective. This is a comprehensive text for undergraduates, graduates and academics in biochemistry, pharmacology and biopharmaceutics, as well as professionals working on the interdisciplinary field of pharmaceutical biotechnology. Written with educators in mind, this book provides teachers with background material to enhance their classes and offers students and other readers an easy-to-read text that examines the step-by-step stages of the development of new biopharmaceuticals. Features: Discusses specific points of great current relevance in relation to new processes as well as traditional processes Addresses the main unitary operations used in the biopharmaceutical industry such as upstream and downstream Includes chapters that allow a broad evaluation of the production process Dr. Adalberto Pessoa Jr. is Full Professor at the School of Pharmaceutical Sciences of the University of S�o Paulo and Visiting Senior Professor at King's College London. He has experience in enzyme and fermentation technology and in the purification processes of biotechnological products such as liquid-liquid extraction, cross-flow filtration and chromatography of interest to the pharmaceutical and food industries. Dr. Michele Vitolo is Full Professor at the School of Pharmaceutical Sciences of the University of S�o Paulo. He has experience in enzyme technology, in immobilization techniques (aiming the reuse of the biocatalyst) and in the operation of membrane reactors for obtaining biotechnological products of interest to the pharmaceutical, chemical and food industries. Dr. Paul F. Long is Professor of Biotechnology at King's College London and Visiting International Research Professor at the University of S�o Paulo. He is a microbiologist by training and his research uses a combination of bioinformatics, laboratory and field studies to discover new medicines from nature, particularly from the marine environment.



فهرست مطالب

Cover\nHalf Title\nTitle Page\nCopyright Page\nTable of Contents\nPreface\nEditors\nContributors\nChapter 1 Fundamentals of Biotechnology\n	1.1 Introduction\n	1.2 Biological Molecules\n		1.2.1 Introduction\n		1.2.2 Proteins\n		1.2.3 Nucleic Acids\n		1.2.4 Virus\n	1.3 Basic Technologies of the Biotechnological Processes\n		1.3.1 Monoclonal Antibody Technology\n		1.3.2 Bioprocessing Technology\n		1.3.3 Cell Culture Technology\n		1.3.4 Tissue Engineering Technology\n		1.3.5 Biosensors Technology\n		1.3.6 Genetic Engineering Technology\n		1.3.7 Protein Engineering Technology\n		1.3.8 Antisense RNA Technology\n		1.3.9 Chip DNA Technology\n		1.3.10 Biocomputing Technology\n	1.4 Biotechnology and Applications\n		1.4.1 Medical\n			1.4.1.1 Diagnostics\n			1.4.1.2 Therapeutics\n		1.4.2 Environment\n		1.4.3 Livestock Raise and Agriculture\n	1.5 Matters of Business\n		1.5.1 Structuring of a Biotechnology Enterprise\n		1.5.2 Biopharmaceutical Industry\n	1.6 Social Aspects of Biotechnology\n		1.6.1 Use of Bioproducts\n		1.6.2 Genetic Privacy and Laboratory Prognostic Testing\n		1.6.3 Stem Cells and Cloning\n		1.6.4 Use of Test Subjects\n		1.6.5 Agriculture\n	1.7 Final Considerations\n	References\nChapter 2 Thermodynamics Applied to Biomolecules\n	2.1 Introduction\n	2.2 Thermodynamic Concepts\n	2.3 Mathematical Modelling\n		2.3.1 Reaction Thermodynamics\n			2.3.1.1 Activation Energy and Standard Enthalpy Variation of the Unfolding Equilibrium\n			2.3.1.2 Enthalpy, Entropy and Gibbs Free Energy of the Reaction\n		2.3.2 Thermodynamics of Biomolecules Thermo-inactivation\n			2.3.2.1 Enthalpy, Entropy and Gibbs Free Energy of Biocatalyst Thermo-Inactivation\n			2.3.2.2 Complementary Kinetic Parameters\n	2.4 Experimental Procedures and Case Studies\n		2.4.1 Thermodynamics of Enzyme-Catalysed Reactions\n			2.4.1.1 Experimental Procedure\n			2.4.1.2 Practical Example\n		2.4.2 Thermodynamics of Biocatalyst Thermal Denaturation\n			2.4.2.1 Experimental Procedure\n			2.4.2.2 Practical Example\n	2.5 Physical and Chemical Factors Influencing Thermodynamic Parameters\n		2.5.1 Temperature\n		2.5.2 pH\n		2.5.3 Substrate Concentration\n		2.5.4 Techniques of Biomolecule Improvement\n	2.6 Final Considerations\n	References\nChapter 3 Expression Systems for the Production of Therapeutic Recombinant Proteins\n	3.1 Introduction\n	3.2 Differences between Synthetic Drugs and Biopharmaceuticals Based on Recombinant Proteins\n	3.3 Main Systems for Expression of Therapeutic Recombinant Proteins\n		3.3.1 Bacteria\n		3.3.2 Yeasts\n		3.3.3 Insect Cells\n		3.3.4 Plant Cells\n		3.3.5 Mammalian Cells\n	3.4 Development of Bioprocesses for the Production of Therapeutic Recombinant Proteins\n	3.5 Final Considerations\n	References\nChapter 4 Molecular Biology: Tools in Industrial Pharmaceutical Biotechnology\n	4.1 Introduction\n	4.2 Therapeutic Targets\n	4.3 Cellular Communication\n	4.4 Expression Gene Regulation\n	4.5 Transcriptional System in Prokaryotes\n		4.5.1 Promoter Structure and Operon\n		4.5.2 Transcription Termination\n	4.6 Transcription Regulation in Eukaryotes\n	4.7 RNA Processing\n	4.8 Final Considerations\n	References\nChapter 5 Molecular Biology Tools: Techniques and Enzymes\n	5.1 Introduction\n	5.2 Isolating a Gene Sequence-DNA Polymerase\n	5.3 Manipulating the Gene Obtained by PCR\n	5.4 Restriction Enzymes and Expression Vectors\n	5.5 Final Considerations\n	References\nChapter 6 Bioinformatics Applied to the Development of Biomolecules of Pharmaceutical Interest\n	6.1 Introduction\n	6.2 Databases\n		6.2.1 Databases of Small Molecules\n		6.2.2 Natural Products Databases\n		6.2.3 Nucleic Acid Databases\n		6.2.4 Peptide Databases\n		6.2.5 Protein Databases\n		6.2.6 Other Relevant Biological Databases\n	6.3 Structural Protein Analysis\n		6.3.1 Visualization Programmes and Analysis of Three-Dimensional Structures\n		6.3.2 Protein Modelling. Why Model?\n			6.3.2.1 Basis of Methods\n			6.3.3.1 MD\n			6.3.3.2 NMA: Normal Modes Analysis\n			6.3.3.3 Comparison: MD vs NMA\n			6.3.3.4 Use\n			6.3.3.5 Interaction Models: Protein vs Ligand\n			6.3.3.6 Docking: Protein vs Small Molecule\n			6.3.3.7 Docking: Protein vs Protein\n	6.4 Examples\n		6.4.1 Bioinformatics in Vaccine Discovery\n		6.4.2 Use of Peptides in New Drug Development\n		6.4.3 Human Immunodeficiency Virus Reverse Transcriptase Inhibitors\n		6.4.4 Applied Bioinformatics Synthetic Biology: Production and Discovery of New Biopharmaceuticals\n	6.5 Final Considerations\n	References\nChapter 7 Bioprocesses: Microorganisms and Culture Media\n	7.1 Introduction\n	7.2 General Characteristics of Microorganisms\n		7.2.1 Cell Concentration Measurement\n		7.2.2 Standard Dry Mass Curve\n			7.2.2.1 Results\n		7.2.3 Duplication and Generation Time\n	7.3 Cultivation Media of Industrial Interest\n		7.3.1 Trace Elements and Minerals\n		7.3.2 Growth Factors\n		7.3.3 Synthetic or Chemically Defined Media\n		7.3.4 Complex Media\n	7.4 Antifoam Agents\n	7.5 pH Control in the Bioprocess\n	7.6 Precursors\n	7.7 Primary and Secondary Metabolites\n		7.7.1 Overproduction of Secondary Metabolites\n	7.8 Final Considerations\n	References\nChapter 8 Sterilization in Pharmaceutical Biotechnology\n	8.1 Introduction\n	8.2 Terms and Definitions\n	8.3 Types of Sterilization\n		8.3.1 Physical Sterilization Methods\n			8.3.1.1 Heat\n			8.3.1.2 Ionizing Radiation\n			8.3.1.3 Filtration\n		8.3.2 Chemical Sterilization Methods\n	8.4 Sterilization in Upstream Operations\n		8.4.1 Culture Media and Its Sterilization\n		8.4.2 Batch Heat Sterilization\n		8.4.3 Heat Sterilization in a Continuous System\n		8.4.4 Sterilization Kinetics of Microorganisms\n		8.4.5 Air Sterilization\n	8.5 Sterilization in Downstream Operations\n		8.5.1 Terminal Sterilization and Aseptic Processing\n		8.5.2 Sterilization of Biopharmaceuticals in Downstream Processes\n		8.5.3 Sterilization of Biopharmaceuticals\n	8.6 Validation of Sterilization Processes\n	8.7 Final Considerations\n	References\nChapter 9 Kinetics of Cell Cultivation\n	9.1 Introduction\n	9.2 Typical Batch Cultivation Phases\n	9.3 With What Does μ Vary? (Model for Cell Growth)\n	9.4 What Does S Vary with? (Model for Substrate Consumption)\n	9.5 How to Calculate the Productivity of a Process?\n	9.6 How Does the Product Concentration Vary (Model for Production)?\n	9.7 Final Considerations\n	References\nChapter 10 Bioreactors: Modes of Operation\n	10.1 Introduction\n	10.2 General Characteristics\n		10.2.1 Batch Mode\n		10.2.2 Fed-Batch Mode\n		10.2.3 Continuous Mode\n	10.3 Mass Balances for Different Modes of Operation\n	10.4 Batch Operation\n		10.4.1 Mass Balance for the Cells in the Batch Mode\n		10.4.2 Mass Balance for the Limiting Substrate in the Batch\n		10.4.3 Mass Balance for the Product in Batch Mode\n	10.5 Fed-Batch Operation\n		10.5.1 Mass Balance for Cells in Fed-Batch Mode\n		10.5.2 Mass Balance for the Limiting Substrate in Fed-Batch Mode\n		10.5.3 Mass Balance for the Product in Fed-Batch Mode\n	10.6 Continuous Mode Operation\n		10.6.1 Mass Balance for Cells in Continuous Mode without Cell Recycling\n		10.6.2 Mass Balance for a Limiting Substrate in Continuous Mode without Cell Recycling\n		10.6.3 Mass Balance for the Product in Continuous Mode without Cell Recycling\n		10.6.4 Mass Balance for Cells in Continuous Mode with External Cell Recycling\n		10.6.5 Mass Balance for the Limiting Substrate in Continuous Mode with External Cell Recycling\n		10.6.6 Mass Balance for the Product in Continuous Mode with External Cell Recycling\n		10.6.7 How to Calculate the Volumetric Productivity of a Continuous Process?\n	10.7 Final Considerations\n	References\nChapter 11 Agitation and Aeration: Oxygen Transfer and Cell Respiration\n	11.1  Introduction\n	11.2  Gas Pressure and Oxygen Partial Pressure\n	11.3  Aeration Systems\n		11.3.1 Superficial Aeration\n		11.3.2 Submerged Aeration\n			11.3.2.1 Aeration by Sparging with Mechanical Agitation (Stirred Tank Reactor)\n			11.3.2.2 Aeration by Bubbling with No Mechanical Agitation\n	11.4  Mechanical Agitation Systems in Bioreactors\n	11.5  Oxygen Transfer and Respiration: From Gas Bubbles to Cells\n	11.6  Gas-Liquid Mass Transfer (Oxygen Supply): OTR\n	11.7  Oxygen Uptake in Cell Cultures (Oxygen Demand): OUR\n	11.8  Integrating Oxygen Supply and Demand\n	11.9  Dissolved Oxygen Concentration (C) Profile in a Culture with Constant Oxygen Transfer Conditions\n	11.10 Control of C\n	11.11 Measurement of k[sub(L)]a\n		11.11.1 Dynamic Method without Cells\n	11.12 Measurement of Q[sub(O2] X\n		11.12.1 Dynamic Method\n		11.12.2 Gas Balance\n		11.12.3 Liquid Phase Mass Balance\n	11.13 Criteria for Scaling Up the Bioprocess\n	11.14 Final Considerations\n	References\nChapter 12 Mammalian Cell Culture Technology\n	12.1 Introduction\n	12.2 Brief History\n	12.3 Main Product Categories\n		12.3.1 Vaccines\n		12.3.2 Monoclonal Antibodies\n		12.3.3 Glycoproteins\n		12.3.4 Cells and Tissues\n		12.3.5 Gene Therapy\n	12.4 Mammalian Cells\n		12.4.1 Basic Characteristics\n		12.4.2 Post-Translational Processes\n		12.4.3 Cell Types\n		12.4.4 Hybridoma Cells\n		12.4.5 Cell Culture Derivatives\n			12.4.5.1 Immunogenicity of Recombinant Proteins\n			12.4.5.2 Basic Structure of Antibodies or Immunoglobulins\n			12.4.5.3 Types of Monoclonal Antibodies\n			12.4.5.4 Phage Display Technology\n			12.4.5.5 Culture Media Used in Mammalian Cell Technology\n			12.4.5.6 Culture Medium Optimization\n		12.4.6 Basic Cell Culture Laboratory\n		12.4.7 Bioprocess and Mammalian Cells\n		12.4.8 Main Guidelines for Obtaining Cell Banks\n			12.4.8.1 Obtaining and Controlling the ‘Original’ Cell\n			12.4.8.2 Cell Bank Preparation\n			12.4.8.3 Qualification Tests of the Cell Bank\n			12.4.8.4 Karyotyping (Cytogenetic Analysis)\n			12.4.8.5 Analysis of Isoenzymes\n			12.4.8.6 DNA Fingerprinting\n			12.4.8.7 Genetic Stability of the Recombinant Mammalian Cell\n		12.4.9 Best Practices in Cell Culture\n		12.4.10 Development of a Cell Line\n			12.4.10.1 Transient Expression\n			12.4.10.2 Stable Expression\n			12.4.10.3 Construction of Expression Vector\n			12.4.10.4 Promoters\n			12.4.10.5 Enhancer\n			12.4.10.6 Elements that Stabilize and Increase the Translation of the Primary Transcript\n			12.4.10.7 Selection Markers\n			12.4.10.8 Selection of Clones\n			12.4.10.9 Transfection\n	12.5 Production Scale-Up\n	12.6 Bioreactors and Mammalian Cell Cultivation\n		12.6.1 Small Scale Culture\n		12.6.2 Scaling-Up Problems\n	12.7  Anchorage-Dependent Cell Systems\n		12.7.1 Roller Bottles\n		12.7.2 Stacked-Plate or Multitray Systems\n		12.7.3 Microcarriers\n		12.7.4 Bed Bioreactors\n	12.8  Systems for Cells in Suspension (or Cells Attached to Microcarriers)\n		12.8.1 Spinner Bottles\n		12.8.2 Shake Flasks\n		12.8.3 Culture Bags\n		12.8.4 Single-Use Bioreactors (SUBs)\n	12.9  Bioreactors\n		12.9.1 Hollow Fibre Bioreactors Applied to the Cultivation of Mammalian Cells\n		12.9.2 Type of Bioprocesses in Cell Culture\n		12.9.3 Cell Metabolism\n		12.9.4 Glucose, Glutamine and Amino Acids as Sources of Energy and Carbon\n		12.9.5 Effects of Lactate and Ammonia\n		12.9.6 Role of Oxygen and CO[sub(2)] in Cellular Metabolism of Mammalian Cells\n	12.10 Monitoring and Control of Mammalian Cell Culture\n		12.10.1 Partial Pressure of O[sub(2)] (pO[sub(2)])\n		12.10.2 Partial Pressure of Carbon Dioxide\n		12.10.3 Metabolites and Products\n		12.10.4 Cell Concentration and Viability\n	12.11 Final Considerations\n	References\nChapter 13 Purification Process of Biomolecules\n	13.1 Introduction\n	13.2 Cell-Liquid Separation\n		13.2.1 Filtration\n		13.2.2 Centrifugation\n	13.3 Cell Disruption\n	13.4 Concentration of Biomolecules\n		13.4.1 Precipitation\n		13.4.2 Tangential Filtration\n		13.4.3 Liquid-Liquid Extraction\n	13.5 Chromatographic Processes\n		13.5.1 Molecular Exclusion\n		13.5.2 Ion Exchange\n		13.5.3 Hydrophobic Interaction\n		13.5.4 Affinity Chromatography\n		13.5.5 Scale Up\n		13.5.6 Expanded Bed Adsorption\n	13.6 Final Treatment\n	13.7 Purification of Monoclonal Antibodies\n	13.8 Endotoxin Removal\n	13.9 Yield and Purity\n	13.10 Identification of Biomolecules\n	13.11 Trends in Processes Applied to the Purification of Biomolecules\n	13.12 Final Considerations\n	References\nChapter 14 Lipopolysaccharides: Methods of Quantification and Removal from Biotechnological Products\n	14.1 Introduction\n	14.2 LPS Characteristics and Properties\n	14.3 LPS Functions and Mechanisms of Action\n	14.4 Main Techniques for LPS Quantification in Biotechnological Products\n		14.4.1 LPS Test in Rabbits\n		14.4.2 LPS Test – Gel Clot\n		14.4.3 LPS Test – Chromogenic and Turbidimetric Kinetics\n		14.4.4 New Methods for LPS Quantification\n	14.5 Techniques Used to Remove LPS from Biotechnological Products\n		14.5.1 Chromatographic Techniques\n			14.5.1.1 Affinity Chromatography\n			14.5.1.2 Ion-Exchange Chromatography\n			14.5.1.3 Hydrophobic Interaction Chromatography\n		14.5.2 Membrane-Based Filtration\n		14.5.3 Ultrafiltration\n		14.5.4 Microfiltration\n		14.5.5 Depth Filtration\n		14.5.6 Novel Methods for LPS Removal\n			14.5.6.1 Aqueous Two-Phase Systems\n	14.6 Final Considerations\n	References\nChapter 15 Enzymes: The Catalytic Proteins\n	15.1 Introduction\n	15.2 Enzyme Specificity\n	15.3 Enzyme Activity\n		15.3.1 Quantification of Enzyme Activity\n		15.3.2 Expression of Enzyme Activity\n		15.3.3 Factors Affecting Enzyme Activity\n			15.3.3.1 Physical-Chemical Factors\n			15.3.3.2 Chemical Factors\n			15.3.3.3 Physical Factors\n		15.3.4 Thermodynamics of Enzyme Catalysis\n	15.4 Final Considerations\n	References\nChapter 16 Enzymes as Drugs and Medicines\n	16.1 Introduction\n	16.2 Enzymes in Medicines\n		16.2.1 Enzymes Bioavailability\n			16.2.1.1 Transport across Endothelium\n		16.2.2 Therapeutic Enzyme Delivery\n		16.2.3 Acylation of Enzymes\n		16.2.4 Molecular Modelling of Enzymes\n		16.2.5 Important Aspects of Therapeutic Enzymes\n	16.3 Enzymes in Clinical Analysis and Cosmetics\n		16.3.1 Clinical Analysis\n		16.3.2 Cosmetics\n	16.4 Final Considerations\n	References\nChapter 17 Aspects of the Immobilization Technique\n	17.1 Introduction\n	17.2 Types of Immobilization\n		17.2.1 Entrapment\n			17.2.1.1 Cross-Linked Matrices\n			17.2.1.2 Encapsulation\n			17.2.1.3 Microencapsulation\n		17.2.2 Bonding Formation\n			17.2.2.1 Adsorption\n			17.2.2.2 Covalent Binding\n			17.2.2.3 Cross-Linking\n		17.2.3 Supports\n		17.2.4 Effects Caused by Immobilization\n			17.2.4.1 Steric and Conformational Effects\n			17.2.4.2 Diffusion and Mass Transport Effects\n			17.2.4.3 Effects of Microenvironment\n			17.2.4.4 Advantages and Disadvantages of the Immobilization Technique\n			17.2.4.5 Applications\n	17.3 Fundamentals of Enzyme Reactors\n		17.3.1 Types of Enzyme Reactors\n		17.3.2 Enzyme Reactor Kinetics\n		17.3.3 Operation of Enzyme Reactors\n	17.4 Final Considerations\n	References\nChapter 18 Biomolecules in Analytical Methods\n	18.1 Introduction\n	18.2 Enzymes as Diagnostic Tools\n		18.2.1 Diagnosis of Gastric Disorders\n		18.2.2 Neonatal Screening\n		18.2.3 Cancer Diagnosis\n		18.2.4 Enzyme Detection of Micronutrients, Microorganisms and Cholesterol\n	18.3 Test Strips\n	18.4 Biosensors\n		18.4.1 General Characteristics\n		18.4.2 Electrochemical Detectors\n			18.4.2.1 Amperometric Biosensors\n			18.4.2.2 Potentiometric Biosensors\n			18.4.2.3 Optical Detectors\n			18.4.2.4 Thermal Detectors\n			18.4.2.5 Piezoelectric Detectors\n			18.4.2.6 Immunodetection Biosensors\n	18.5 Novel Trends in Biosensing Technology\n		18.5.1 Microfluidic Integrated Biosensors: Towards Lab-on-a-Chip\n		18.5.2 Wearable Biosensors for Healthcare Monitoring\n	18.6 Final Considerations\n	References\nChapter 19 Nanotechnology and Biopharmaceuticals\n	19.1  Introduction\n	19.2  Nanobiotechnology for Biopharmaceuticals\n	19.3  Liposomes\n	19.4  Polymersomes\n	19.5  Polymeric Micelles\n	19.6  Polymeric Nanoparticles: Nanocapsules and Nanospheres\n	19.7  Nanoemulsions and Microemulsions\n	19.8  Solid Lipid Nanoparticles and Nanostructured Lipid Carriers\n	19.9  PEGylation\n	19.10 Characterization Techniques\n		19.10.1 Dynamic Light Scattering (DLS)\n		19.10.2 Nanoparticle Tracking Analysis (NTA)\n		19.10.3 Zeta Potential (ZP)\n		19.10.4 Microscopy\n	19.11 Nanotoxicity\n	19.12 Regulatory Aspects\n	19.13 Final Considerations\n	References\nChapter 20 Biosafety Applied in Pharmaceutical and Biotechnological Processes\n	20.1 Introduction\n	20.2 Definitions of Biosafety\n	20.3 Classification of Microorganisms by Risk Group\n	20.4 Biosafety Levels\n		20.4.1 Biosafety Level 1 (BSL-1)\n			20.4.1.1 Laboratory Practices for BSL-1\n			20.4.1.2 Safety Equipment for BSL-1\n			20.4.1.3 BSL-1 Laboratory Facility\n		20.4.2 Biosafety Level 2 (BSL-2)\n			20.4.2.1 Laboratory Practices for BSL-2\n			20.4.2.2 Safety Equipment for BSL-2\n			20.4.2.3 BSL-2 Laboratory Facility\n		20.4.3 Biosafety Level 3 (BSL-3)\n			20.4.3.1 Laboratory Practices for BSL-3\n			20.4.3.2 Safety Equipment for BSL-3\n			20.4.3.3 BSL-3 Laboratory Facility\n		20.4.4 Biosafety Level 4 (BSL-4)\n			20.4.4.1 Laboratory Practices for BSL-4\n			20.4.4.2 Safety Equipment for BSL-4\n			20.4.4.3 BSL-4 Laboratory Facility\n	20.5 Laboratory Accidents\n		20.5.1 Historical Accidents\n		20.5.2 Accident Prevention\n			20.5.2.1 Proper Laboratory Supervision\n			20.5.2.2 Training and Awareness\n			20.5.2.3 Continued Education\n			20.5.2.4 Proper Laboratory Techniques\n			20.5.2.5 Proper Laboratory Equipment\n			20.5.2.6 Laboratory Organization\n			20.5.2.7 Vaccination\n	20.6 Activity Planning\n	20.7 Safety Equipment\n	20.8 Final Considerations\n	References\nChapter 21 Pharmaceutical Quality System for Biotechnology Products\n	21.1 Introduction\n	21.2 Pharmaceutical Quality System (PQS)\n	21.3 Quality-by-Design in Biotechnology Product and Process Development\n		21.3.1 Historical Context\n		21.3.2 QbD-based Development\n			21.3.2.1 Product Design Space\n			21.3.2.2 Process Design Space\n			21.3.2.3 Control Strategy\n			21.3.2.4 Lifecycle Management Plan\n	21.4 Practical Notes on Process Development\n		21.4.1 Expression Systems\n			21.4.1.1 Bacterial Systems\n			21.4.1.2 Filamentous Fungi and Yeast Systems\n			21.4.1.3 Mammalian Cell Systems\n		21.4.2 Where Does Biopharmaceutical Scale-Up Start?\n	21.5 Good Manufacturing Practices (GMP)\n		21.5.1 Validation – Production Process\n		21.5.2 Process Validation in Bioreactors (Upstream)\n		21.5.3 Validation of Extraction and Purification Processes (Downstream)\n		21.5.4 Validation – Viral Safety\n			21.5.4.1 Physical Methods\n			21.5.4.2 Chemical Methods\n		21.5.5 Validation – Analytical Methods\n			21.5.5.1 Reference Standard\n			21.5.5.2 Method Development\n		21.5.6 Validation – Biological Assays\n		21.5.7 Change Control\n	21.6 Analytical Methods for Laboratory Quality Control\n		21.6.1 Physicochemical Tests\n			21.6.1.1 High-Performance Liquid Chromatography (HPLC)\n			21.6.1.2 Gel Electrophoresis\n			21.6.1.3 NMR – Nuclear Magnetic Resonance\n			21.6.1.4 Capillary Electrophoresis\n			21.6.1.5 Spectrophotometric Methods\n		21.6.2 Others (pH, Total Solids, Preservatives, Isotonicity)\n		21.6.3 In vitro Tests\n			21.6.3.1 Cytotoxicity\n			21.6.3.2 Isoenzymes\n			21.6.3.3 Microbiological Tests\n			21.6.3.4 Mycoplasma\n	21.7 Preclinical Safety Evaluation\n		21.7.1 Acute Toxicity\n		21.7.2 Subacute Toxicity or Repetitive Doses\n		21.7.3 Chronic and Subchronic Toxicity\n		21.7.4 Teratogenicity and Reproductive Disorders\n		21.7.5 Immunotoxicity\n		21.7.6 Pharmacokinetics\n		21.7.7 Carcinogenicity or Oncogenicity\n			21.7.7.1 In vitro Preclinical Studies – Mutagenicity\n			21.7.7.2 In Vitro Mammalian Chromosomal Aberration Test (OECD 473)\n			21.7.7.3 In Vitro Mammalian Cell Gene Mutation Test (OECD 476)\n			21.7.7.4 Recombinant Bacterial Testing (OECD 471)\n	21.8 Legal Aspects for Clinical Trials\n		21.8.1 Phases of the Clinical Trial\n			21.8.1.1 Phase I\n			21.8.1.2 Phase II (Pilot Therapeutic Study)\n			21.8.1.3 Phase III\n			21.8.1.4 Phase IV\n		21.8.2 Ethical Aspects of Human Trials\n	21.9 Final Considerations\n	References\nChapter 22 Techno-Economic Evaluation of Biotechnological Processes and Pharmacoeconomic Analysis\n	22.1 Introduction\n	22.2 Bioprocess Design and Economics\n		22.2.1 Design Basis\n		22.2.2 Upstream Section\n		22.2.3 Bioreaction Section\n		22.2.4 Downstream Section\n		22.2.5 Process Flow Diagram and Process Simulation\n		22.2.6 Economic Analysis\n		22.2.7 Cost Analysis\n		22.2.8 Profitability Analysis\n	22.3 Examples of Techno-Economic Analysis\n		22.3.1 Comparison of the Insulin and BGL Production Processes\n	22.4 Beyond Techno-Economic Analysis\n	22.5 Costs Considerations in Biopharmaceuticals\n	22.6 Pharmacoeconomic Analysis\n	22.7 Biopharmaceutical Pharmacoeconomic Study Example\n	22.8 Final Considerations\n	References\nChapter 23 Perspectives for Pharmaceutical Biotechnology\n	23.1  Introduction\n	23.2  Some Neurodegenerative Diseases\n	23.3  Schistosomiasis\n	23.4  AIDS\n	23.5  Cancer\n	23.6  Stem Cells\n	23.7  Biotechnology Interfaces\n	23.8  Administration of Bioactive Molecules\n	23.9  Individualized Therapeutics\n	23.10 Synthetic Biomolecules\n	23.11 Electronics in Pharmaceutical Biotechnology\n	23.12 Final Considerations\n	References\nIndex




نظرات کاربران