دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Goel N., Kumar N. (ed.) سری: ISBN (شابک) : 9783031218996 ناشر: Springer سال نشر: 2022 تعداد صفحات: 330 [331] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Pharmaceutical Applications of Supramolecules به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای دارویی سوپرامولکول ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به تشریح استفاده از سوپرامولکول ها به عنوان داروهای مختلف دارویی می پردازد. شیمی سوپرامولکولی در علوم دارویی یک رشته کاملاً جوان و به سرعت در حال توسعه است. مجموعههای سوپرمولکولی ممکن است جایگزینی برای فرمولهای دارویی موجود باشد، زیرا بهبود خواص فیزیکوشیمیایی و دارویی را تسهیل میکنند، یعنی فراهمی زیستی بالاتر، زیستسازگاری بهتر و هدفگیری دارو، مقاومتهای چندگانه کمتر. این کتاب مروری بر پیشرفتهای اخیر در ساختارهای فوق مولکولی ارائه میکند و جنبهها و چالشهای آینده مربوط به توسعه این مولکولها را مورد بحث قرار میدهد و همچنین دیدگاهی در مورد چگونگی غلبه بر این مسائل ارائه میدهد.
This book outlines the use of supramolecules as different pharmaceutical drugs. Supramolecular chemistry in pharmaceutical sciences is quite a young and rapidly developing field. Supramolecular assemblies might offer an alternative for existing pharmaceutical formulations, as they facilitate the improvement of physicochemical and pharmacological properties i.e., higher bioavailability, better biocompatibility and drug-targeting, fewer multidrug-resistances. This book offers an overview of the recent advances in supramolecular structures and discusses the future aspects and challenges related to the development of these molecules, providing also a perspective on how to overcome these issues.
Cover Half Title Pharmaceutical Applications of Supramolecules Copyright Dedication Preface About this Book Contents Editors and Contributors 1. Supramolecules in Pharmaceutical Science: A Brief Overview 1.1 Introduction 1.2 Recent Development of Supramolecules in Pharmaceutical Science 1.3 Conclusions References 2. Basic Strategy and Methods of Preparation for Supramolecules 2.1 Introduction 2.2 Role of Non-covalent Interactions in the Preparation of Supramolecules 2.2.1 Electrostatic Interactions 2.2.2 The π-Interactions 2.2.3 The van der Waals Forces 2.2.4 Hydrophobic Interactions 2.3 Supramolecular Synthons 2.4 Common Strategies Used in the Formation of Supramolecular Structures Based on the Non-covalent Supramolecular Interactions 2.4.1 Supramolecular Synthesis Based on Hydrogen (H) Bonding 2.4.2 Supramolecular Synthesis Based on Halogen Bonding 2.4.3 Supramolecular Synthesis Based on Coordination Bonding 2.4.4 Template-Directed Supramolecular Synthesis 2.4.5 Supramolecular Synthesis Based on Functionalization of Groups 2.4.6 Supramolecular Synthesis Based on Self-Assembling 2.5 Preparation of Supramolecules Through Host-Guest Interactions 2.5.1 Charge-Transfer Interaction Through Donor (D) and Acceptor (A) Molecules 2.5.2 Hydrophobic Interaction 2.5.3 Molecular Recognition: Molecular Complementarity 2.5.4 Chelate and Template Effects 2.6 Supramolecular Synthesis Based on Green Methods 2.7 Preparation of Supramolecules via Crystallization Methods 2.8 Construction of Supramolecules Using Electrochemical Methods 2.9 Preparation of Supramolecular Systems Involving Solid-State Chemistry 2.10 Preparation of Supramolecular Polymeric Materials Based on Non-covalent Interactions 2.10.1 Supramolecular Polymerization Based on H-Bonding 2.10.2 Supramolecular Polymerization Based on Metal Coordination 2.10.3 Supramolecular Polymerization on Account of Host-Guest Interactions 2.10.4 Supramolecular Polymerization Based on Donor-Acceptor Interactions 2.10.5 Supramolecular Polymerization Based on Ionic Interactions 2.11 Synthesis of Supramolecules Based on Nanoparticles (SNPs) 2.12 Summary and Outlook References 3. Research and Development of Supramolecules as Anticancer Drugs 3.1 Introduction 3.2 Kind of Supramolecules for Cancer Therapy 3.2.1 Supramolecules Based on Molecular Assembly 3.2.2 Supramolecules Based on Molecular Recognition 3.2.3 Supramolecules Based on Molecular Association 3.2.4 Metal-Based Supramolecules 3.3 Role of Supramolecules in Enhancement of Solubility and Permeability 3.4 Pharmacokinetic Consideration of Anticancer Supramolecules 3.5 Biological Barriers for the Supramolecule Delivery 3.6 Functionality of Supramolecules for Targeted Drug Delivery System 3.7 Regulatory Consideration of Supramolecules 3.8 Conclusions References 4. Research and Development of Liquid-Crystalline Supramolecular Assemblies as Anticancer Drugs 4.1 Introduction 4.2 The Liquid Crystals 4.3 Anti-proliferative Potential of Thermotropic LCs Against Solid Cancers 4.3.1 Phenylpyrimidine Derivatives Possessing a Polyhydroxy Unit 4.3.2 Cyanobiphenyl Derivative Possessing a Terminal Hydroxy Group 4.3.3 Phenyl Benzoate Derivative Possessing a Terminal Hydroxy Group 4.3.4 Effects of Liquid Crystallinity on the Anti-proliferative Activity 4.3.5 Selective Anti-proliferative Effect 4.4 Concluding Remarks References 5. Progressive Approach of Supramolecules Towards the Advancement of Antimicrobial Drugs 5.1 Introduction 5.2 Fundamentals of Supramolecular Chemistry, Molecular Assembly and Factors Influencing Supramolecular Assembly 5.3 Monomorphic Peptide Nanofibers as Antimicrobial Agents 5.4 Self-Assembled Supramolecular Nanofibrillar Nets as Antimicrobial Agents 5.5 Supramolecular Peptide Nanoribbons as Antimicrobial Agents 5.6 Supramolecular Peptide Nanotube-Based Antimicrobial Agents 5.7 Supramolecular Hydrogels as Antimicrobial Agents 5.7.1 Peptide-Based Supramolecular Hydrogels as Antimicrobial Agents 5.7.2 Metal Nanoparticles-Polymer-Based Composite Supramolecular Hydrogels as Antimicrobial Agents 5.8 Supramolecular Macrocycles as Antimicrobial Agents 5.9 Supramolecular Biosensors Enabling Enhanced Detection of Microbial Diseases 5.10 Conclusions References 6. Promising Functional Supramolecules in Antiviral Drugs 6.1 Introduction to Functional Supramolecules 6.1.1 Properties of Supramolecules 6.2 Mechanism of Viral Pathogenicity 6.2.1 Life Cycle of Viruses 6.2.1.1 Entry and Recognition 6.2.1.2 Modes of Entry 6.2.1.3 Conformational Changes 6.2.1.4 Targeting Uncoating Step 6.2.1.5 Pathogenesis 6.3 Functional Supramolecular Systems 6.4 Viral Diseases 6.4.1 Human Immunodeficiency Virus (HIV) 6.4.1.1 HIV Antiviral Therapy 6.4.2 Herpes Simplex Virus (HSV) 6.4.3 Hepatitis Virus 6.4.4 Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV-2) 6.5 Antiviral Therapeutics 6.5.1 Supramolecules as Antiviral Agents 6.6 Challenges in Antiviral Therapy 6.7 Conclusions References 7. Role of Supramolecules in Anti-inflammatory Drugs 7.1 Introduction 7.2 Supramolecules as Pharmaceutical Agents 7.3 Role of Supramolecules in Anti-inflammatory Drugs 7.3.1 Metallo-supramolecular Complexes as Anti-inflammatory Agents 7.3.2 Cyclodextrin-Based Anti-inflammatory Supramolecular Complexes 7.3.3 Hydrogels-Based Anti-inflammatory Supramolecular Complexes 7.4 Conclusions References 8. Recent Advancements of Supramolecules in the Evolution of Cardiovascular Drugs 8.1 Cardiovascular Diseases 8.1.1 Common Types of Cardiovascular Disorders 8.1.2 Current Treatment Methods for Cardiovascular Diseases 8.2 Supramolecular Nanomaterials 8.2.1 DNA Origami 8.2.2 Peptides and Peptide Amphiphiles 8.2.3 Metal and Polymeric Nanoparticles 8.2.4 Nanotubes 8.2.5 Electrospun Nanofibers 8.3 Supramolecular Nanomaterials for Cardiovascular Disease Management 8.3.1 Cardiac Muscle Regeneration 8.3.2 Stent Functionalization 8.3.3 Imaging 8.3.4 Drug Delivery 8.4 Conclusions References 9. Development of Supramolecules in the Field of Nanomedicines 9.1 Introduction 9.2 Principles of Supramolecular Aggregation 9.3 Formulation Strategies of Supramolecular Nanomedicine 9.4 Supramolecule-Based Nanomedicine 9.4.1 Polymeric Nanoparticles 9.4.2 Polymeric Core-Shell Nanomedicine 9.4.3 Lipoidal Supramolecular Nanomedicine 9.4.4 Supramolecular Micelles 9.4.5 Supramolecular Nanofibers 9.4.6 Nanovesicles 9.4.7 Supramolecular Nanodevices 9.4.8 Stimuli-Response Supramolecular Nanomedicine 9.4.8.1 pH-Responsive Supramolecular Nanomedicine 9.4.8.2 Temperature-Responsive Supramolecular Nanomedicine 9.4.8.3 Redox-Responsive Supramolecular Nanomedicine 9.4.9 Supramolecular Nanomedicine-Based Host-Guest System 9.5 Release Kinetics Modeling from Supramolecular Drug Delivery System 9.6 Supramolecular Drug Challenge to Overcome Drug Resistance in Tumor Cells 9.7 Conclusions References 10. Supramolecular Self-Assembled Peptide-Based Nanostructures and Their Applications in Biomedicine 10.1 Introduction 10.2 Synthesis of Peptides 10.3 Factors Responsible for Self-Assembly of Peptide 10.3.1 Non-covalent Interactions 10.3.1.1 Hydrogen (H)-Bonding 10.3.1.2 π-π Interactions 10.3.1.3 Hydrophobic Interactions 10.3.1.4 Electrostatic Interactions 10.3.1.5 Van der Waals Interactions 10.3.2 Effects of Stimuli and Environmental Conditions 10.3.2.1 pH-Responsive Peptide Self-Assembly 10.3.2.2 Thermo-Responsive Peptide Self-Assembly 10.3.2.3 Light-Responsive Peptide Self-Assembly 10.3.2.4 Ionic Strength-Dependent Peptide Self-Assembly 10.3.2.5 Solvent-Dependent Peptide Self-Assembly 10.3.2.6 Metal Ion-Induced Peptide Self-Assembly 10.3.2.7 Concentration-Dependent Peptide Self-Assembly 10.4 Biomedical Applications 10.4.1 Drug Delivery 10.4.2 Antibacterial Agents 10.4.3 Tissue Engineering 10.4.4 Vaccination 10.4.5 Neurodegenerative Diseases 10.4.6 Other Vital Applications 10.5 Conclusions References 11. Recent Advancement of Supramolecules in the Field of Bioimaging 11.1 Introduction 11.2 Supramolecular Hydrogels as Bioimaging Probes 11.3 Host-Guest Chemistry in Bioimaging 11.3.1 Avidin-Biotin 11.3.2 Cyclodextrins 11.3.3 Calixarenes 11.3.4 Pillararene 11.3.5 Cucurbituril 11.4 Conclusions References 12. Role of Supramolecules in Vaccine Development 12.1 Introduction 12.2 History of Vaccine Development 12.3 Classification 12.4 Vaccines Based on Peptide Self-Assembly 12.4.1 Vaccines for Cellular Immunity Based on Self-Assembled Peptides 12.4.2 Humoral Immunity Vaccines Based on the Self-Assembled Peptide 12.5 Supramolecular-Based Nanostructures in Vaccines 12.6 Conclusions and Future Outlook References 13. Supramolecules: Future Challenges and Perspectives 13.1 Supramolecular Polymers 13.2 Molecular Machines and Motors 13.3 Molecular Sensors 13.4 Combination of Photodynamic Therapy 13.5 Dynamic Combinatorial Chemistry 13.6 Conclusions References