دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Bernt Aadnoy
سری:
ISBN (شابک) : 0128159030, 9780128159033
ناشر: Gulf Professional Publishing
سال نشر: 2019
تعداد صفحات: 438
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 مگابایت
در صورت تبدیل فایل کتاب Petroleum Rock Mechanics: Drilling Operations and Well Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک سنگ نفت: عملیات حفاری و طراحی چاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مکانیک سنگهای نفتی: عملیات حفاری و طراحی چاه، نسخه دوم، مهندسین نفت و حفاری را به طور متمرکز بر اصول اساسی پیرامون ژئومکانیک متمرکز میکند و در عین حال آنها را به روز نگه میدارد. به سرعت در مورد آخرین مسائل و مشکلات عملی. این کتاب با فصلهای جدید در مورد عملیات پیرامون نفت شیل، گاز شیل و شکست هیدرولیکی، و با بخشهای جدید در مورد تنش درجا، طراحی حفاری با وزن بهینه گل و تجزیه و تحلیل ناپایداری چاه، یک منبع ایدهآل است. با ایجاد پیوند بین نظریه و مشکلات عملی، این نسخه به روز شده به ارائه جدیدترین تحقیقات و اصول اساسی برای عملیات حفاری امروزی ادامه می دهد.
Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations.
Cover Petroleum Rock Mechanics: Drilling Operations and Well Design Copyright Dedication About the Authors Preface to the Second Edition Preface to the First Edition Acknowledgments Acknowledgments List of Symbols Subscripts Superscripts Other Abbreviations Part I: Fundamentals of Solid Mechanics 1 Stress/Strain Definitions and Components 1.1 General Concept 1.2 Definition of Stress 1.3 Stress Components 1.4 Definition of Strain 1.5 Strain Components 2 Stress and Strain Transformation 2.1 Introduction 2.2 Transformation Principles 2.3 Two-Dimensional Stress Transformation 2.4 Stress Transformation in Space 2.5 Tensor of Stress Components 2.6 Strain Transformation in Space 3 Principal and Deviatoric Stresses and Strains 3.1 Introduction 3.2 Principal Stresses 3.3 Average and Deviatoric Stresses 3.4 General Interpretation of Principal Stresses 3.5 Two-Dimensional Stress Analysis 3.6 Properties of Strain 4 Theory of Elasticity 4.1 Introduction 4.2 Materials Behavior 4.3 Hooke’s Law 4.4 Hooke’s Law in Shear 4.5 Analysis of Structures 4.6 Theory of Inelasticity 4.7 Constitutive Relation for Rocks 5 Failure Criteria 5.1 Introduction 5.2 Failure Criteria for Rock Materials 5.3 The Von Mises Failure Criterion 5.4 Mohr–Coulomb Failure Criterion 5.5 The Griffith Failure Criterion 5.6 Hoek–Brown Failure Criterion 5.7 Drucker–Prager Failure Criterion 5.8 Mogi–Coulomb Failure Criterion Part II: Petroleum Rock Mechanics 6 Introduction to Petroleum Rock Mechanics 6.1 Introduction 6.2 Definition and Classification of Rocks 6.3 Petroleum Rock Mechanics 6.4 Why Study Stress in Rocks? 6.5 Units of Measurement 7 Porous Rocks and Effective Stresses 7.1 Introduction 7.2 Anisotropy and Inhomogeneity 7.3 Anisotropic Rocks, Transversal Isotropy 7.3.1 Anisotropic Rock Properties 7.3.2 Properties of Sedimentary Rocks 7.3.3 Effects of Anisotropic Rock Properties 7.3.4 Horizontal Wellbore in Laminated Sedimentary Rocks 7.3.4.1 Borehole Fracturing 7.3.4.2 Borehole Collapse 7.4 Porous Rock 7.5 Formation Pore Pressure 7.6 Effective Stress 7.7 Formation Porosity and Permeability 8 In Situ Stress 8.1 Introduction 8.2 Definitions 8.3 In Situ Principal Stresses 8.4 Measurement and Estimation of In Situ Stresses 8.5 Probabilistic Analysis of Stress Data 8.6 Bounds on In Situ Stresses 8.6.1 Problem Statement 8.6.2 The In Situ Stresses 8.6.3 Bounds on the In Situ Stresses 8.6.4 Application of the Model 8.7 Stress Directions From Fracture Traces 8.7.1 Traces From Fractures 8.7.2 Interpretation of Fracture Traces 8.8 Obtaining Both Horizontal Stresses From Elliptical Wellbores 8.8.1 Elliptical Boreholes in Compression 8.8.2 Borehole Collapse 8.8.3 Bounds on the In Situ Stresses 8.8.4 North Sea Field Case 8.8.5 Brazil Field Cases 8.8.6 Quality of Input Data 9 Rock Strength and Rock Failure 9.1 Introduction 9.2 Strength of Rock Material 9.3 Empirical Correlations 9.3.1 Pore Pressure Correlations 9.4 Formation Fracture Gradient 9.4.1 Direct Method 9.4.2 Indirect Method 9.4.2.1 Hubbert and Willis Method 9.4.2.2 Matthews and Kelly Method 9.4.2.3 Pennebaker Method 9.4.2.4 Eaton Method 9.4.2.5 Christman Method 9.5 Laboratory Testing of Intact Rocks 9.6 Rock Tensile Strength 9.7 Rock Shear Strength 9.7.1 Triaxial Test Method 9.7.2 Failure Criteria 10 Drilling Design and Selection of Optimal Mud Weight 10.1 Introduction 10.2 Borehole Problems 10.2.1 Low or High Mud Weight? 10.2.2 Key Factors to Prevent Borehole Problems 10.2.3 Higher Mud Weight; the Whole Truth? 10.2.3.1 Borehole Collapse 10.2.3.2 Fill 10.2.3.3 Pressure Variations 10.2.3.4 Washouts 10.2.3.5 Tight Hole 10.2.3.6 Clay Swelling 10.2.3.7 Differential Sticking 10.2.3.8 Lost Circulation 10.2.3.9 Reduced Drilling Rate 10.2.3.10 Mud Cost 10.2.3.11 Pore Pressure Estimation 10.3 Mud Properties 10.4 Mechanics of Stresses Acting on the Borehole Wall 10.4.1 Stability of Borehole Wall 10.4.2 The In Situ Stress State 10.5 The Median Line Principle 10.6 Application of the Median Line Principle 10.7 Tectonic Stresses 11 Stresses Around a Wellbore 11.1 Introduction 11.2 State of Stresses Around a Wellbore 11.3 Properties of Rock Formation Around a Wellbore 11.4 Stress Analysis Governing Equations 11.4.1 Equations of Equilibrium 11.4.2 Equations of Compatibility 11.4.3 Constitutive Relations 11.4.4 Boundary Conditions 11.5 Analysis of Stresses Around a Wellbore 11.5.1 Definition of the Problem 11.5.2 General Assumptions 11.5.3 Analysis Methodology 11.5.4 Stress Transformation 11.6 Isotropic Solution 11.6.1 Governing Equations 11.6.2 Boundary Conditions 11.7 Anisotropic Solution 11.7.1 Governing Equations 11.7.2 Boundary Conditions 12 Wellbore Instability Analysis 12.1 Introduction 12.2 Analysis Procedure 12.3 Wellbore Fracturing Pressure 12.4 Wellbore Collapse Pressure 12.5 Instability Analysis of Multilateral Boreholes 12.5.1 Borehole Fracturing 12.5.2 Borehole Collapse 12.6 Instability Analysis of Adjacent Boreholes 12.6.1 Borehole Collapse 12.6.2 Borehole Fracturing 12.7 Instability Analysis of Underbalanced Drilling 12.8 Shallow Fracturing 12.8.1 Depth-Normalized Shallow Fracture Data 12.8.2 Estimation of Shallow Fracture Gradient for a Semisub and a Jack-Up Rig 12.9 General Fracturing Model 12.9.1 Introduction 12.9.2 Development of the Model 12.9.2.1 The Overburden Stress 12.9.2.2 Assumptions 12.9.2.3 Normalization of Fracture Pressures 12.9.2.4 Different but Constant Bulk Densities 12.9.2.5 Similar and Constant Bulk Densities 12.9.2.6 Similar Rock Penetration and Constant Bulk Densities 12.9.3 Field Cases 12.10 Compaction Analysis for High-Pressure, High-Temperature Reservoirs 12.11 Breakthrough of a Relief Well into a Blowing Well 12.11.1 Fracturing at a Distance 12.11.2 Collapse When Communicating 12.11.3 Information From Drillability Analysis 12.12 Fracture Model for Load History and Temperature 12.12.1 The Effect of Poisson’s Ratio 12.12.2 The Effect of Temperature 12.12.3 Initial Conditions and History Matching 12.12.3.1 Initial Conditions 12.12.3.2 Isotropic Stress Loading 12.12.3.3 Anisotropic Stress Loading 12.12.3.4 Elastoplastic Barrier 12.12.3.5 Initial Temperature Conditions 12.12.3.6 The Complete Model for History Matching 12.12.4 Applications of the New Model 12.13 Effects of Flow-Induced Stresses 12.13.1 Applications of the Flow-Induced Stress Model 12.14 Sand Production Modeling 12.14.1 Sand Production During Reservoir Depletion 12.14.1.1 Sand Production Failure Model 12.14.1.2 Borehole Stresses 12.14.1.3 Effects of Pore Pressure Reduction 12.14.2 Sand Production in Elliptical Wellbores 12.14.2.1 Elliptical Boreholes in Compression 12.14.2.2 Borehole Collapse 12.14.2.3 Volume of Sand Produced 12.14.2.4 Effect of Depletion 12.15 Short Guide to Wellbore Stability Analysis 12.15.1 In Situ Stress Analysis 12.15.2 Fracturing of the Wellbore 12.15.3 Simplified Fracture Equation 12.15.4 Wellbore Collapse 13 Wellbore Instability Analysis Using Inversion Technique 13.1 Introduction 13.2 Definitions 13.3 The Inversion Technique 13.4 Geological Aspects 13.4.1 First Scenario—Isotropic Stress State 13.4.2 Second Scenario—Anisotropic Stress State 13.5 Analysis Constraints 13.6 Inversion From Fracture Data and Image Logs 14 Wellbore Instability Analysis Using Quantitative Risk Assessment 14.1 Introduction 14.2 Deterministic Analysis Versus Probabilistic Assessment 14.3 Why Probabilistic Assessment? 14.4 Quantitative Risk Assessment 14.4.1 Quantitative Risk Assessment Process 14.4.2 Key Physical Parameters 14.4.3 Limit State Function 14.4.4 Probability Failure Function 14.4.5 Sensitivity Analysis 14.5 Quantitative Risk Assessment of Underbalanced Drilling 15 The Effect of Mud Losses on Wellbore Stability 15.1 Introduction 15.2 Mud Losses During Drilling 15.2.1 Experimental Work 15.2.2 The Fracturing Models 15.2.2.1 The Penetrating Model 15.2.2.2 The Nonpenetrating Model 15.2.3 Description of the Fracturing Process 15.2.4 Properties of the Mud Cake 15.2.4.1 Synergy Between Various Lost Circulation Additives 15.2.4.2 Effect of Carbon Fibers as Additives 15.2.4.3 General Observations 15.2.5 Shallow Well Field Case 15.2.6 Recommended Mud Recipes 15.3 Interpretation of the Leak-Off Tests 15.3.1 Experiments With Continuous Pumping 15.3.2 What Happens at the Fracture Failure 15.3.3 Leak-Off Test Interpretation 15.3.4 Irreversibility of the Fracturing Process 15.3.5 Summary of the Key Findings 15.4 Future Development for Wellbore Stability 16 Shale Oil, Shale Gas, and Hydraulic Fracturing 16.1 Introduction 16.2 Shale Gas and Shale Oil Characteristics and Properties 16.2.1 Developing the Technology 16.2.2 Geology of Shale Formations 16.2.3 Properties of Shale Plays 16.2.4 Recovery and Production Outlook 16.3 Drilling in Shale Gas and Shale Oil Reserves 16.3.1 Mechanics of Hydraulic Fracturing 16.3.1.1 Exploration 16.3.1.2 Well Completion 16.3.1.3 Completion in Horizontal Wells 16.3.2 Hydraulic Fracturing Process 16.3.3 Hydraulic Fracturing Types/Fluids 16.3.4 Mechanical Cutting of Shale Formation 16.3.5 Improved Fracturing Using Proppants 16.4 Hydraulic Fracturing Regulations and Legislations 16.4.1 Worldwide Regulations 16.4.2 US Regulations 16.4.3 Concerns Regarding Hydraulic Fracturing 16.5 Oil and Gas Recovery of Shale Reservoir 16.5.1 Recovery 16.5.2 Improved Recovery 16.5.2.1 Gas Injection 16.6 Shale Gas and Shale Oil Current Status, Future Perspective, and Challenges 16.6.1 The Current Status 16.6.2 The Future Perspective 16.6.3 Approach Toward Increased Shale Oil and Shale Gas Production Appendix A Mechanical Properties of Rocks Appendix B The Poisson’s Ratio Effect 1.1 Well Deformation Appendix C A Model for the Stress Bridge 1.1 Plastic Zone (e%3cr%3cf) 1.2 Elastic Zone (d%3cr%3ce) Appendix D Glossary of Terms References Index Back Cover