ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Petroleum Rock Mechanics: Drilling Operations and Well Design

دانلود کتاب مکانیک سنگ نفت: عملیات حفاری و طراحی چاه

Petroleum Rock Mechanics: Drilling Operations and Well Design

مشخصات کتاب

Petroleum Rock Mechanics: Drilling Operations and Well Design

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0128159030, 9780128159033 
ناشر: Gulf Professional Publishing 
سال نشر: 2019 
تعداد صفحات: 438 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 مگابایت 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Petroleum Rock Mechanics: Drilling Operations and Well Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مکانیک سنگ نفت: عملیات حفاری و طراحی چاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مکانیک سنگ نفت: عملیات حفاری و طراحی چاه



مکانیک سنگ‌های نفتی: عملیات حفاری و طراحی چاه، نسخه دوم، مهندسین نفت و حفاری را به طور متمرکز بر اصول اساسی پیرامون ژئومکانیک متمرکز می‌کند و در عین حال آنها را به روز نگه می‌دارد. به سرعت در مورد آخرین مسائل و مشکلات عملی. این کتاب با فصل‌های جدید در مورد عملیات پیرامون نفت شیل، گاز شیل و شکست هیدرولیکی، و با بخش‌های جدید در مورد تنش درجا، طراحی حفاری با وزن بهینه گل و تجزیه و تحلیل ناپایداری چاه، یک منبع ایده‌آل است. با ایجاد پیوند بین نظریه و مشکلات عملی، این نسخه به روز شده به ارائه جدیدترین تحقیقات و اصول اساسی برای عملیات حفاری امروزی ادامه می دهد.


توضیحاتی درمورد کتاب به خارجی

Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations.



فهرست مطالب

Cover
Petroleum Rock Mechanics: Drilling Operations and Well
Design
Copyright
Dedication
About the Authors
Preface to the Second Edition
Preface to the First Edition
	Acknowledgments
Acknowledgments
List of Symbols
	Subscripts
	Superscripts
	Other
	Abbreviations
Part I: Fundamentals of Solid Mechanics
1 Stress/Strain Definitions and Components
	1.1 General Concept
	1.2 Definition of Stress
	1.3 Stress Components
	1.4 Definition of Strain
	1.5 Strain Components
2 Stress and Strain Transformation
	2.1 Introduction
	2.2 Transformation Principles
	2.3 Two-Dimensional Stress Transformation
	2.4 Stress Transformation in Space
	2.5 Tensor of Stress Components
	2.6 Strain Transformation in Space
3 Principal and Deviatoric Stresses and Strains
	3.1 Introduction
	3.2 Principal Stresses
	3.3 Average and Deviatoric Stresses
	3.4 General Interpretation of Principal Stresses
	3.5 Two-Dimensional Stress Analysis
	3.6 Properties of Strain
4 Theory of Elasticity
	4.1 Introduction
	4.2 Materials Behavior
	4.3 Hooke’s Law
	4.4 Hooke’s Law in Shear
	4.5 Analysis of Structures
	4.6 Theory of Inelasticity
	4.7 Constitutive Relation for Rocks
5 Failure Criteria
	5.1 Introduction
	5.2 Failure Criteria for Rock Materials
	5.3 The Von Mises Failure Criterion
	5.4 Mohr–Coulomb Failure Criterion
	5.5 The Griffith Failure Criterion
	5.6 Hoek–Brown Failure Criterion
	5.7 Drucker–Prager Failure Criterion
	5.8 Mogi–Coulomb Failure Criterion
Part II: Petroleum Rock Mechanics
6 Introduction to Petroleum Rock Mechanics
	6.1 Introduction
	6.2 Definition and Classification of Rocks
	6.3 Petroleum Rock Mechanics
	6.4 Why Study Stress in Rocks?
	6.5 Units of Measurement
7 Porous Rocks and Effective Stresses
	7.1 Introduction
	7.2 Anisotropy and Inhomogeneity
	7.3 Anisotropic Rocks, Transversal Isotropy
		7.3.1 Anisotropic Rock Properties
		7.3.2 Properties of Sedimentary Rocks
		7.3.3 Effects of Anisotropic Rock Properties
		7.3.4 Horizontal Wellbore in Laminated Sedimentary Rocks
			7.3.4.1 Borehole Fracturing
			7.3.4.2 Borehole Collapse
	7.4 Porous Rock
	7.5 Formation Pore Pressure
	7.6 Effective Stress
	7.7 Formation Porosity and Permeability
8 In Situ Stress
	8.1 Introduction
	8.2 Definitions
	8.3 In Situ Principal Stresses
	8.4 Measurement and Estimation of In Situ Stresses
	8.5 Probabilistic Analysis of Stress Data
	8.6 Bounds on In Situ Stresses
		8.6.1 Problem Statement
		8.6.2 The In Situ Stresses
		8.6.3 Bounds on the In Situ Stresses
		8.6.4 Application of the Model
	8.7 Stress Directions From Fracture Traces
		8.7.1 Traces From Fractures
		8.7.2 Interpretation of Fracture Traces
	8.8 Obtaining Both Horizontal Stresses From Elliptical Wellbores
		8.8.1 Elliptical Boreholes in Compression
		8.8.2 Borehole Collapse
		8.8.3 Bounds on the In Situ Stresses
		8.8.4 North Sea Field Case
		8.8.5 Brazil Field Cases
		8.8.6 Quality of Input Data
9 Rock Strength and Rock Failure
	9.1 Introduction
	9.2 Strength of Rock Material
	9.3 Empirical Correlations
		9.3.1 Pore Pressure Correlations
	9.4 Formation Fracture Gradient
		9.4.1 Direct Method
		9.4.2 Indirect Method
			9.4.2.1 Hubbert and Willis Method
			9.4.2.2 Matthews and Kelly Method
			9.4.2.3 Pennebaker Method
			9.4.2.4 Eaton Method
			9.4.2.5 Christman Method
	9.5 Laboratory Testing of Intact Rocks
	9.6 Rock Tensile Strength
	9.7 Rock Shear Strength
		9.7.1 Triaxial Test Method
		9.7.2 Failure Criteria
10 Drilling Design and Selection of Optimal Mud Weight
	10.1 Introduction
	10.2 Borehole Problems
		10.2.1 Low or High Mud Weight?
		10.2.2 Key Factors to Prevent Borehole Problems
		10.2.3 Higher Mud Weight; the Whole Truth?
			10.2.3.1 Borehole Collapse
			10.2.3.2 Fill
			10.2.3.3 Pressure Variations
			10.2.3.4 Washouts
			10.2.3.5 Tight Hole
			10.2.3.6 Clay Swelling
			10.2.3.7 Differential Sticking
			10.2.3.8 Lost Circulation
			10.2.3.9 Reduced Drilling Rate
			10.2.3.10 Mud Cost
			10.2.3.11 Pore Pressure Estimation
	10.3 Mud Properties
	10.4 Mechanics of Stresses Acting on the Borehole Wall
		10.4.1 Stability of Borehole Wall
		10.4.2 The In Situ Stress State
	10.5 The Median Line Principle
	10.6 Application of the Median Line Principle
	10.7 Tectonic Stresses
11 Stresses Around a Wellbore
	11.1 Introduction
	11.2 State of Stresses Around a Wellbore
	11.3 Properties of Rock Formation Around a Wellbore
	11.4 Stress Analysis Governing Equations
		11.4.1 Equations of Equilibrium
		11.4.2 Equations of Compatibility
		11.4.3 Constitutive Relations
		11.4.4 Boundary Conditions
	11.5 Analysis of Stresses Around a Wellbore
		11.5.1 Definition of the Problem
		11.5.2 General Assumptions
		11.5.3 Analysis Methodology
		11.5.4 Stress Transformation
	11.6 Isotropic Solution
		11.6.1 Governing Equations
		11.6.2 Boundary Conditions
	11.7 Anisotropic Solution
		11.7.1 Governing Equations
		11.7.2 Boundary Conditions
12 Wellbore Instability Analysis
	12.1 Introduction
	12.2 Analysis Procedure
	12.3 Wellbore Fracturing Pressure
	12.4 Wellbore Collapse Pressure
	12.5 Instability Analysis of Multilateral Boreholes
		12.5.1 Borehole Fracturing
		12.5.2 Borehole Collapse
	12.6 Instability Analysis of Adjacent Boreholes
		12.6.1 Borehole Collapse
		12.6.2 Borehole Fracturing
	12.7 Instability Analysis of Underbalanced Drilling
	12.8 Shallow Fracturing
		12.8.1 Depth-Normalized Shallow Fracture Data
		12.8.2 Estimation of Shallow Fracture Gradient for a Semisub and a Jack-Up Rig
	12.9 General Fracturing Model
		12.9.1 Introduction
		12.9.2 Development of the Model
			12.9.2.1 The Overburden Stress
			12.9.2.2 Assumptions
			12.9.2.3 Normalization of Fracture Pressures
			12.9.2.4 Different but Constant Bulk Densities
			12.9.2.5 Similar and Constant Bulk Densities
			12.9.2.6 Similar Rock Penetration and Constant Bulk Densities
		12.9.3 Field Cases
	12.10 Compaction Analysis for High-Pressure, High-Temperature Reservoirs
	12.11 Breakthrough of a Relief Well into a Blowing Well
		12.11.1 Fracturing at a Distance
		12.11.2 Collapse When Communicating
		12.11.3 Information From Drillability Analysis
	12.12 Fracture Model for Load History and Temperature
		12.12.1 The Effect of Poisson’s Ratio
		12.12.2 The Effect of Temperature
		12.12.3 Initial Conditions and History Matching
			12.12.3.1 Initial Conditions
			12.12.3.2 Isotropic Stress Loading
			12.12.3.3 Anisotropic Stress Loading
			12.12.3.4 Elastoplastic Barrier
			12.12.3.5 Initial Temperature Conditions
			12.12.3.6 The Complete Model for History Matching
		12.12.4 Applications of the New Model
	12.13 Effects of Flow-Induced Stresses
		12.13.1 Applications of the Flow-Induced Stress Model
	12.14 Sand Production Modeling
		12.14.1 Sand Production During Reservoir Depletion
			12.14.1.1 Sand Production Failure Model
			12.14.1.2 Borehole Stresses
			12.14.1.3 Effects of Pore Pressure Reduction
		12.14.2 Sand Production in Elliptical Wellbores
			12.14.2.1 Elliptical Boreholes in Compression
			12.14.2.2 Borehole Collapse
			12.14.2.3 Volume of Sand Produced
			12.14.2.4 Effect of Depletion
	12.15 Short Guide to Wellbore Stability Analysis
		12.15.1 In Situ Stress Analysis
		12.15.2 Fracturing of the Wellbore
		12.15.3 Simplified Fracture Equation
		12.15.4 Wellbore Collapse
13 Wellbore Instability Analysis Using Inversion Technique
	13.1 Introduction
	13.2 Definitions
	13.3 The Inversion Technique
	13.4 Geological Aspects
		13.4.1 First Scenario—Isotropic Stress State
		13.4.2 Second Scenario—Anisotropic Stress State
	13.5 Analysis Constraints
	13.6 Inversion From Fracture Data and Image Logs
14 Wellbore Instability Analysis Using Quantitative Risk Assessment
	14.1 Introduction
	14.2 Deterministic Analysis Versus Probabilistic Assessment
	14.3 Why Probabilistic Assessment?
	14.4 Quantitative Risk Assessment
		14.4.1 Quantitative Risk Assessment Process
		14.4.2 Key Physical Parameters
		14.4.3 Limit State Function
		14.4.4 Probability Failure Function
		14.4.5 Sensitivity Analysis
	14.5 Quantitative Risk Assessment of Underbalanced Drilling
15 The Effect of Mud Losses on Wellbore Stability
	15.1 Introduction
	15.2 Mud Losses During Drilling
		15.2.1 Experimental Work
		15.2.2 The Fracturing Models
			15.2.2.1 The Penetrating Model
			15.2.2.2 The Nonpenetrating Model
		15.2.3 Description of the Fracturing Process
		15.2.4 Properties of the Mud Cake
			15.2.4.1 Synergy Between Various Lost Circulation Additives
			15.2.4.2 Effect of Carbon Fibers as Additives
			15.2.4.3 General Observations
		15.2.5 Shallow Well Field Case
		15.2.6 Recommended Mud Recipes
	15.3 Interpretation of the Leak-Off Tests
		15.3.1 Experiments With Continuous Pumping
		15.3.2 What Happens at the Fracture Failure
		15.3.3 Leak-Off Test Interpretation
		15.3.4 Irreversibility of the Fracturing Process
		15.3.5 Summary of the Key Findings
	15.4 Future Development for Wellbore Stability
16 Shale Oil, Shale Gas, and Hydraulic Fracturing
	16.1 Introduction
	16.2 Shale Gas and Shale Oil Characteristics and Properties
		16.2.1 Developing the Technology
		16.2.2 Geology of Shale Formations
		16.2.3 Properties of Shale Plays
		16.2.4 Recovery and Production Outlook
	16.3 Drilling in Shale Gas and Shale Oil Reserves
		16.3.1 Mechanics of Hydraulic Fracturing
			16.3.1.1 Exploration
			16.3.1.2 Well Completion
			16.3.1.3 Completion in Horizontal Wells
		16.3.2 Hydraulic Fracturing Process
		16.3.3 Hydraulic Fracturing Types/Fluids
		16.3.4 Mechanical Cutting of Shale Formation
		16.3.5 Improved Fracturing Using Proppants
	16.4 Hydraulic Fracturing Regulations and Legislations
		16.4.1 Worldwide Regulations
		16.4.2 US Regulations
		16.4.3 Concerns Regarding Hydraulic Fracturing
	16.5 Oil and Gas Recovery of Shale Reservoir
		16.5.1 Recovery
		16.5.2 Improved Recovery
			16.5.2.1 Gas Injection
	16.6 Shale Gas and Shale Oil Current Status, Future Perspective, and Challenges
		16.6.1 The Current Status
		16.6.2 The Future Perspective
		16.6.3 Approach Toward Increased Shale Oil and Shale Gas Production
Appendix A Mechanical Properties of Rocks
Appendix B The Poisson’s Ratio Effect
	1.1 Well Deformation
Appendix C A Model for the Stress Bridge
	1.1 Plastic Zone (e%3cr%3cf)
	1.2 Elastic Zone (d%3cr%3ce)
Appendix D Glossary of Terms
References
Index
Back Cover




نظرات کاربران