دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Kenneth J. Berry, Kenneth L. Kvamme, Janis E. Johnston, Paul W. Mielke Jr. سری: ISBN (شابک) : 3030743608, 9783030743604 ناشر: Springer سال نشر: 2021 تعداد صفحات: 677 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Permutation Statistical Methods with R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های آماری جایگشت با R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با ادغام روشهای آماری جایگشت با طیف گستردهای از روشهای آماری کلاسیک و برنامههای R مرتبط، رویکردی منحصربهفرد برای توضیح آمار جایگشتی دارد. این با مقایسه و تضاد دو مدل استنتاج آماری آغاز میشود: مدل کلاسیک جامعه که توسط J. Neyman و E.S. پیرسون و مدل جایگشت اولین بار توسط R.A. فیشر و E.J.G. پیتمن. مقایسههای متعددی از جایگزینی و روشهای آماری کلاسیک ارائه شدهاند که با انواع اسکریپتهای R برای سهولت محاسبه تکمیل شدهاند. این متن از طرح کلی یک کتاب درسی مقدماتی آمار با فصول گرایش مرکزی و متغیر، تست های تک نمونه ای، تست های دو نمونه ای، تست های جفت همسان، تحلیل واریانس کاملا تصادفی، تحلیل واریانس با بلوک های تصادفی، ساده پیروی می کند. رگرسیون خطی و همبستگی، و تجزیه و تحلیل حسن تناسب و احتمال.
برخلاف روشهای آماری کلاسیک، روشهای آماری جایگشتی بر توزیعهای نظری تکیه نمیکنند، از مفروضات معمول نرمال بودن و همگنی اجتناب میکنند، تنها به دادههای مشاهدهشده بستگی دارند. و نیازی به نمونه گیری تصادفی ندارد. این روشها نسبتاً جدید هستند، زیرا برای در دسترس قرار دادن آنها برای کسانی که در تحقیقات جریان اصلی کار میکنند، نیاز به قدرت محاسباتی مدرن است.این کتاب که برای مخاطبانی با پیشزمینهی آماری محدود طراحی شده است، میتواند به راحتی به عنوان یک کتاب مورد استفاده قرار گیرد. کتاب درسی برای دوره های کارشناسی یا کارشناسی ارشد در آمار، روانشناسی، اقتصاد، علوم سیاسی یا زیست شناسی. هیچ آموزش آماری فراتر از اولین دوره در آمار مورد نیاز نیست، اما مقداری دانش یا علاقه به زبان برنامه نویسی R فرض می شود.
This book takes a unique approach to explaining permutation statistics by integrating permutation statistical methods with a wide range of classical statistical methods and associated R programs. It opens by comparing and contrasting two models of statistical inference: the classical population model espoused by J. Neyman and E.S. Pearson and the permutation model first introduced by R.A. Fisher and E.J.G. Pitman. Numerous comparisons of permutation and classical statistical methods are presented, supplemented with a variety of R scripts for ease of computation. The text follows the general outline of an introductory textbook in statistics with chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, completely-randomized analysis of variance, randomized-blocks analysis of variance, simple linear regression and correlation, and the analysis of goodness of fit and contingency.
Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity, depend only on the observed data, and do not require random sampling. The methods are relatively new in that it took modern computing power to make them available to those working in mainstream research.Designed for an audience with a limited statistical background, the book can easily serve as a textbook for undergraduate or graduate courses in statistics, psychology, economics, political science or biology. No statistical training beyond a first course in statistics is required, but some knowledge of, or some interest in, the R programming language is assumed.
Preface Acknowledgments Contents 1 Introduction 1.1 Overviews of Chaps. 2–11 1.2 Chapter 2 1.3 Chapter 3 1.4 Chapter 4 1.5 Chapter 5 1.6 Chapter 6 1.7 Chapter 7 1.8 Chapter 8 1.9 Chapter 9 1.10 Chapter 10 1.11 Chapter 11 1.12 Summary 1.13 Preview of Chap. 2 References 2 The R Programming Language 2.1 R and RStudio, What are They About? 2.1.1 What is R? 2.1.2 Using R: Interactive Versus ``Batch'' Mode 2.1.3 Installing R 2.1.4 RStudio 2.1.5 R Help 2.1.6 R Manuals and Books 2.2 Beginning R and RStudio 2.2.1 Preliminaries 2.2.2 R as a Simple Calculator 2.2.3 Arrow Keys for Using Previous Commands 2.2.4 Variables 2.2.5 The Assignment Operator 2.2.6 Using Variables in Expressions 2.2.7 Removing Variables—Using R Functions 2.2.8 Mathematical Functions 2.2.9 Nesting of Commands 2.2.10 Numerical Representations 2.3 Vectors 2.3.1 Creating Vector Variables 2.3.2 Using Subscripts: Vector Indexing 2.3.3 Adding and Removing Vector Elements 2.3.4 Doing Mathematics with Vectors 2.3.5 Missing Values 2.3.6 Random Numbers 2.3.7 Basic Statistical Functions 2.4 Basic R Data Types 2.4.1 Coercion 2.4.2 Numeric Data 2.4.3 Logical Data 2.4.4 Integer Data 2.4.5 Character Data 2.4.6 Learning More About Variables 2.5 Matrices 2.5.1 Creating Matrices 2.5.2 Characteristics of a Matrix 2.5.3 Applying Functions to Query Matrices 2.5.4 Manipulating Matrices 2.5.5 Naming Rows and Columns 2.5.6 Adding New Rows or Columns to Matrices 2.6 Arrays: More Than Two Dimensions 2.7 Factors 2.7.1 Factor Functions 2.7.2 Useful Data Manipulations with Factors 2.8 Lists 2.8.1 Referencing List Elements 2.8.2 Manipulating Lists 2.8.3 Search Path Attachment 2.9 Data Frames 2.9.1 Viewing and Selecting Data Frame Elements 2.9.2 Computing Statistics 2.9.3 Sorting Data Frames 2.9.4 R's Sorting Functions 2.9.5 Adding Rows or Columns to Data Frames 2.9.6 Creating a New Data Frame 2.9.7 Editing Values in a Data Frame 2.10 Saving Work 2.10.1 Setting and Getting Folder Pathways 2.10.2 Session History Files 2.10.3 R Scripts 2.10.4 Workspace Files 2.10.5 Writing External Text Files 2.11 Reading External Text Files 2.11.1 Reading Files Holding a Single Variable 2.11.2 Reading Tables of Data with Many Variables 2.12 Downloading and Installing Packages 2.13 Programming Structures in R 2.13.1 The Comment 2.13.2 Writing Your Own Functions 2.13.3 Conditional Statements 2.13.4 Loops 2.13.5 Writing Interactive Code 2.14 Summary 2.15 Preview of Chap. 3 References 3 Permutation Statistical Methods 3.1 Introduction 3.2 A Brief History of Permutation Methods 3.2.1 The 1920s 3.2.2 The 1930s 3.2.3 The 1940s 3.2.4 The 1950s 3.2.5 The 1960s 3.2.6 The 1970s 3.2.7 The 1980s 3.2.8 The 1990s 3.2.9 The 2000s 3.2.10 The 2010s 3.3 The Neyman–Pearson Population Model 3.4 The Fisher–Pitman Permutation Model 3.4.1 Exact Permutation Tests 3.4.2 Monte Carlo Permutation Tests 3.5 Permutation and Parametric Statistical Tests 3.5.1 The Assumption of Random Sampling 3.5.2 The Assumption of Normality 3.6 Advantages of Permutation Methods 3.7 Calculation Efficiency 3.7.1 High-Speed Computing 3.7.2 Analysis with Combinations 3.7.3 Mathematical Recursion 3.7.4 Variable Components of a Test Statistic 3.7.5 Holding an Array Constant 3.8 Summary 3.9 Preview of Chap. 4 References 4 Central Tendency and Variability 4.1 Introduction 4.2 Data Storage Modes and Structures 4.3 Statistical Graphics 4.4 The Sample Mode 4.4.1 R Script for the Sample Mode 4.5 The Sample Mean 4.5.1 R Script for the Sample Mean 4.6 The Sample Median 4.6.1 R Script for the Sample Median 4.7 The Sample Standard Deviation and Variance 4.7.1 R Script for the Sample Standard Deviation 4.8 The Mean Absolute Deviation 4.8.1 R Script for the Mean Absolute Deviation 4.9 An Alternative Approach to Dispersion Measures 4.9.1 Pairwise Differences: Standard Deviation 4.9.2 R Script for the Sample Standard Deviation 4.10 Summary 4.11 Preview of Chap. 5 Reference 5 One-Sample Tests 5.1 Introduction 5.2 Student's One-Sample t Test 5.3 A Permutation Approach 5.4 The Relationship Between Test Statistics t and δ 5.5 Test Statistics t and δ 5.5.1 R Script for Student's t Test 5.5.2 R Script for Test Statistic δ 5.5.3 R Script for an Exact Student's t Test 5.5.4 The Choice Between Test Statistics t and δ 5.6 The Measurement of Effect Size 5.6.1 R Script for the Expected Value of δ 5.7 Detailed Calculations for Statistics δ and µδ 5.7.1 Comparisons of Effect Size Measures 5.7.2 R Script for the Measure of Effect Size 5.8 Measures of Effect Size 5.8.1 R Script for Measures of Effect Size 5.9 Analyses with v = 2 and v = 1 5.9.1 An Exact Analysis with v = 2 5.9.2 R Script for Test Statistic δ 5.9.3 The Assumption of Normality 5.9.4 An Exact Analysis with v = 1 5.10 Exact and Monte Carlo Analyses 5.10.1 A Monte Carlo Analysis with v = 2 5.10.2 R Script for a Monte Carlo Analysis 5.10.3 An Exact Analysis with v = 2 5.10.4 A Monte Carlo Analysis with v = 1 5.10.5 An Exact Analysis with v = 1 5.11 Rank-Score Permutation Analyses 5.11.1 The Wilcoxon Signed-Ranks Test 5.11.2 A Permutation Approach 5.11.3 An Example Analysis 5.11.4 R Script for Wilcoxon's Signed-Ranks Test 5.11.5 An Exact Analysis with v = 2 5.11.6 The Relationship Between Statistics T and δ 5.11.7 R Script for a Monte Carlo Probability Value 5.11.8 An Exact Analysis with v = 1 5.12 Summary 5.13 Preview of Chap. 6 References 6 Two-Sample Tests 6.1 Introduction 6.2 Two-Sample Tests 6.2.1 Student's Two-Sample t Test 6.3 A Permutation Approach 6.3.1 The Relationship Between Statistics t and δ 6.4 Test Statistics t and δ 6.4.1 R Script for a Test of Homogeneity 6.4.2 R Script for Student's t Test 6.4.3 A Permutation Approach 6.4.4 R Script for Test Statistic δ 6.5 Measures of Effect Size 6.5.1 Comparisons of Effect Size Measures 6.5.2 R Script for Measures of Effect Size 6.6 Analyses with v = 2 and v = 1 6.6.1 An Exact Analysis with v = 2 6.6.2 Measures of Effect Size 6.6.3 An Exact Analysis with v = 1 6.7 Exact and Monte Carlo Analyses 6.7.1 A Monte Carlo Analysis with v = 2 6.7.2 R Script for a Monte Carlo Analysis 6.7.3 Measures of Effect Size 6.7.4 A Monte Carlo Analysis with v = 1 6.8 Rank-Score Permutation Analyses 6.8.1 The Wilcoxon–Mann–Whitney Test 6.8.2 R Script for the Wilcoxon Rank-Sum Test 6.8.3 An Exact Analysis with v = 2 6.8.4 R Script for an Exact Wilcoxon Test 6.8.5 An Exact Analysis with v = 1 6.9 Summary 6.10 Preview of Chap. 7 References 7 Matched-Pairs Tests 7.1 Introduction 7.2 Matched-Pairs Tests 7.2.1 Student's Matched-Pairs t Test 7.3 A Permutation Approach 7.3.1 The Relationship Between Statistics t and δ 7.4 Test Statistics t and δ 7.4.1 R Script for Student's Matched-Pairs t Test 7.4.2 An Exact Analysis 7.4.3 R Script for an Exact Matched-Pairs Test 7.5 Measures of Effect Size 7.5.1 Comparisons of Effect Size Measures 7.5.2 R Script for Measures of Effect Size 7.6 Analyses with v = 2 and v = 1 7.6.1 An Exact Analysis with v = 2 7.6.2 R Script for an Exact Student's t Test 7.6.3 An Exact Analysis with v = 1 7.6.4 A Comparison of v = 2 and v = 1 7.7 Exact and Monte Carlo Analyses 7.7.1 A Monte Carlo Analysis with v = 2 7.7.2 R Script for a Monte Carlo Analysis 7.7.3 An Exact Analysis with v = 2 7.7.4 A Monte Carlo Analysis with v = 1 7.7.5 An Exact Analysis with v = 1 7.8 Rank-Score Permutation Analyses 7.8.1 The Wilcoxon Signed-Ranks Test 7.8.2 R Script for Wilcoxon's Signed-Ranks Test 7.8.3 An Exact Analysis with v = 2 7.8.4 R Script for an Exact Signed-Ranks Test 7.8.5 The Relationship Between Statistics T and δ 7.8.6 An Exact Analysis with v = 1 7.9 Summary 7.10 Preview of Chap. 8 References 8 Completely-Randomized Designs 8.1 Introduction 8.2 Fisher's F-Ratio Test 8.3 A Permutation Approach 8.4 The Relationship Between Statistics F and δ 8.5 Test Statistics F and δ 8.5.1 The Bartlett Test for Homogeneity 8.5.2 R Script for Bartlett's Test of Homogeneity 8.5.3 The Analysis of Variance 8.5.4 R Script for an Analysis of Variance 8.5.5 An Alternative to R Function aov() 8.5.6 A Permutation Approach 8.5.7 R Script for Test Statistic δ 8.6 Measures of Effect Size 8.6.1 Comparisons of Effect Size Measures 8.6.2 R Script for Measures of Effect Size 8.7 Analyses with v = 2 and v = 1 8.7.1 The Analysis of Variance 8.7.2 A Monte Carlo Analysis with v = 2 8.7.3 Measures of Effect Size 8.7.4 A Monte Carlo Analysis with v = 1 8.8 Exact and Monte Carlo Analyses 8.8.1 The Analysis of Variance 8.8.2 A Monte Carlo Analysis with v = 2 8.8.3 Measures of Effect Size 8.8.4 A Monte Carlo Analysis with v = 1 8.9 Rank-score Permutation Analyses 8.9.1 The Kruskal–Wallis Rank-sum Test 8.9.2 R Script for the Kruskal–Wallis Rank-sum Test 8.9.3 A Monte Carlo Analysis with v = 2 8.9.4 R Script for a K–W Probability Value 8.10 Summary 8.11 Preview of Chap. 9 References 9 Randomized-Blocks Designs 9.1 Introduction 9.2 Randomized-Blocks Analysis of Variance 9.2.1 Fisher's F-Ratio Test Statistic 9.3 A Permutation Approach 9.4 The Relationship Between Statistics F and δ 9.5 Test Statistics F and δ 9.5.1 R Script for a Randomized-Blocks Analysis 9.5.2 An Exact Analysis with v = 2 9.5.3 R Script for a Permutation Analysis 9.6 Measures of Effect Size 9.6.1 An Example Analysis 9.6.2 R Script for Three Measures of Effect Size 9.7 Analyses with v = 2 and v = 1 9.7.1 A Monte Carlo Analysis with v = 2 9.7.2 R Script for a Monte Carlo Analysis 9.7.3 Measures of Effect Size 9.7.4 A Monte Carlo Analysis with v = 1 9.8 A Larger Monte Carlo Analysis 9.8.1 A Monte Carlo Analysis with v = 2 9.8.2 Measures of Effect Size 9.9 Rank-Score Permutation Analyses 9.9.1 Friedman's Analysis of Variance for Ranks 9.9.2 R Script for Friedman's Rank-Sum Test 9.9.3 A Monte Carlo Analysis with v = 2 9.9.4 R Script for Friedman's Rank-Sum Test 9.9.5 A Monte Carlo Analysis with v = 1 9.10 Summary 9.11 Preview of Chap. 10 References 10 Correlation and Association 10.1 Introduction 10.2 Linear Correlation 10.2.1 A Permutation Approach 10.3 The Relationship Between Statistics rxy and δ 10.4 An Example Analysis 10.4.1 R Script for Pearson's Correlation Coefficient 10.4.2 An Exact Permutation Analysis 10.4.3 R Script for an Exact Analysis 10.4.4 R Script for a Monte Carlo Analysis 10.5 A Measure of Effect Size 10.5.1 A Monte Carlo Permutation Analysis 10.6 Spearman's Rank-Order Correlation Coefficient 10.6.1 The Relationship Between Statistics rs and δ 10.6.2 R Script for Spearman's Rank Correlation 10.6.3 A Monte Carlo Permutation Analysis 10.6.4 R Script for a Monte Carlo Analysis 10.6.5 R Script for an Exact Analysis 10.7 Kendall's τa Measure of Association 10.7.1 An Example 10.7.2 The Relationship Between Kendall's S and δ 10.7.3 R Script for Kendall's τa Coefficient 10.7.4 A Monte Carlo Permutation Analysis 10.7.5 R Script for a Monte Carlo Analysis 10.7.6 An Exact Permutation Analysis 10.7.7 R Script for an Exact Analysis 10.8 Kendall's τb Measure of Association 10.8.1 Example Analysis 10.8.2 R Script for Kendall's τb Coefficient 10.8.3 R Script for a Monte Carlo Analysis 10.8.4 An Exact Permutation Analysis 10.8.5 R Script for an Exact Analysis 10.9 The Analysis of Contingency Tables 10.9.1 R Script for Analyzing a Contingency Table 10.10 Spearman's Footrule Agreement Measure 10.10.1 The Relationship Between mathcalR and 10.10.2 A Monte Carlo Analysis 10.10.3 R Script for an Exact Analysis 10.11 The Relationship Between mathcalR and S 10.12 Summary 10.13 Preview of Chap. 11 References 11 Chi-Squared and Related Measures 11.1 Introduction 11.2 Chi-Squared Goodness-of-Fit Tests 11.2.1 Example 11.2.2 R Script for Pearson's Goodness-of-Fit Test 11.2.3 A Monte Carlo Permutation Analysis 11.2.4 R Script for a Monte Carlo Probability Value 11.3 Measures of Effect Size 11.3.1 Pearson's χ2 Measure of Effect Size 11.3.2 R Code for a χ2 Measure of Effect Size 11.3.3 Wilks' G2 Measure of Effect Size 11.3.4 R Code for a G2 Measure of Effect Size 11.3.5 A Chance-Corrected Measure of Effect Size 11.3.6 R Code for a Chance-Corrected Measure 11.4 Chi-Squared Test of Independence 11.4.1 Example 11.4.2 R Script for Pearson's Test of Independence 11.4.3 A Measure of Effect Size 11.4.4 R Script for Cramér's Measure of Effect Size 11.5 A Chance-Corrected Measure of Effect Size 11.5.1 Illustration of a Chance-Corrected Measure 11.5.2 A Maximum Chi-Squared Procedure 11.5.3 R Script for a Measure of Effect Size 11.5.4 A Monte Carlo Probability Value 11.5.5 R Script for a Monte Carlo Probability Value 11.6 Fisher's Exact Probability Test 11.6.1 Example Analysis 11.6.2 R Script for Fisher's Exact Probability Test 11.6.3 A Recursion Example 11.6.4 Recursion with an Arbitrary Origin 11.6.5 R Script for Fisher's Exact Probability Test 11.7 Summary References Author Index Subject Index