ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods

دانلود کتاب ارزن مروارید در قرن بیست و یکم: غذا- تغذیه- انعطاف پذیری آب و هوا- بهبود معیشت

Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods

مشخصات کتاب

Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods

ویرایش:  
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 981995889X, 9789819958894 
ناشر: Springer 
سال نشر: 2024 
تعداد صفحات: 632
[623] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 55,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ارزن مروارید در قرن بیست و یکم: غذا- تغذیه- انعطاف پذیری آب و هوا- بهبود معیشت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword I
Foreword II
Foreword III
Contents
About the Editor
1: Current Trends and Future Prospects in Global Production, Utilization, and Trade of Pearl Millet
	1.1 Introduction
		1.1.1 Importance of Pearl Millet
	1.2 Global Millet Production Domains
		1.2.1 Potential Welfare Benefits
		1.2.2 Millet Types and Their Distribution
			Box 1.1 Types of Millets and Their Distribution
	1.3 Global Millet Production Regions
		1.3.1 Region-Wise Production and Productivity Trends
		1.3.2 Major Millet-Producing Countries
	1.4 Global Utilization of Millets
		Box 1.2 Utilization of Different Types of Millets
	1.5 Global Millet Trade
		1.5.1 The Regional Trend in Millet Imports
		1.5.2 Regional Millet Export Trend
		1.5.3 Major Millet Export and Import Countries in the World
	1.6 Future Prospects in Global Millet Supply and Demand
	1.7 Constraints in Millet Production
		1.7.1 Biotic Constraints
		1.7.2 Abiotic Constraints
		1.7.3 Socio-Economic Constraints
	1.8 Opportunities for Demand Expansion
	1.9 Conclusions
	Annexure: IMPACT Model
	References
2: Status and Utility of Pearl Millet Germplasm for Crop Improvement
	2.1 Introduction
	2.2 Gene Pool and Races of Pearl Millet
	2.3 Germplasm Resources Conservation Status
		2.3.1 Conservation Strategy
		2.3.2 In Situ Conservation
		2.3.3 Ex Situ Conservation
			2.3.3.1 Global Status
			2.3.3.2 Gap Analysis in the Ex Situ Collection
		2.3.4 Germplasm Subsets
		2.3.5 Characterisation and Evaluation of Pearl Millet
	2.4 Trait Variability and Promising Sources
		2.4.1 Morpho-Agronomic Traits
		2.4.2 Grain Nutrients and Quality Traits
		2.4.3 Variation for Fodder Yield and Quality Traits
		2.4.4 Abiotic Stress Tolerance
		2.4.5 Biotic Stress Resistance
		2.4.6 Crop Wild Relatives as a Source of Important Traits
	2.5 Germplasm Utilisation in Crop Improvement
	2.6 Summary
	References
3: Milestones in Biology, Genetics, and Breeding of Pearl Millet
	3.1 Introduction
	3.2 Pearl Millet Biology
		3.2.1 Center of Origin and Taxonomy
		3.2.2 Establishing Outcrossing Nature of Pearl Millet
		3.2.3 Understanding Growth and Development Stages
		3.2.4 Photoperiod Response and Day-Length Sensitivity
		3.2.5 Environmental Adaptation
	3.3 Pearl Millet Genetics
		3.3.1 Heterosis: High Magnitude in a Positive Direction
		3.3.2 Discovery of Cytoplasmic-Nuclear Male Sterility
		3.3.3 Fertility Restorers in Hybrids
		3.3.4 Genetic Linkage Groups
		3.3.5 Wide Hybridization
		3.3.6 d2 Dwarfing Genes
		3.3.7 Apomixis
		3.3.8 Doubled Haploids
		3.3.9 Genome Sequencing
	3.4 Pearl Millet Breeding
		3.4.1 Mass and Recurrent Selection
		3.4.2 Chance Hybrids Using Protogynous Flowering
		3.4.3 Introduction of Cytoplasmic Male-Sterile (MS) Lines in India
		3.4.4 First CMS-Based Commercial Hybrid
		3.4.5 Alternative CMS Sources
		3.4.6 Cultivar Development
		3.4.7 Delineation of Production Area into Mega-Environments
		3.4.8 Creation of Genebank Having World Pearl Millet Collection
		3.4.9 Establishing Core and Mini-Core Collections
		3.4.10 First Marker-Assisted Selection (MAS) Product in India
		3.4.11 First Biofortified Variety in India and Africa
		3.4.12 Heterotic Pools
		3.4.13 Hybrid Breeding in Africa
		3.4.14 Seed Production Innovations
	3.5 Institutionalization of Pearl Millet Research
	3.6 Conclusions
	References
4: Advances in Pearl Millet Hybrid Breeding and Development of Parental Lines
	4.1 Introduction: Hybrids, a Better Option in Pearl Millet
	4.2 Development of Hybrid Parents
		4.2.1 Trait Prioritization Under Different Product Profiles/Market-Segments
			4.2.1.1 Seed Parents
			4.2.1.2 Restorer Parents
		4.2.2 Genetic Diversification
		4.2.3 Cytoplasmic Diversification
			4.2.3.1 CMS Search and Characterization
			4.2.3.2 Cytoplasmic Diversification of Seed and Restorer Parents
		4.2.4 Breeding Methods
			4.2.4.1 Line Breeding to Develop B- and R-Lines
			4.2.4.2 Selection for DM and Blast Resistance
			4.2.4.3 Testing for Combining Ability
			4.2.4.4 A-Line Development
				Conversion Stage
				Conversion Method
				Selection During the Conversion Process
			4.2.4.5 Improving Adaptation and Nutritional Traits
	4.3 Enhancing Magnitude of Heterosis
		4.3.1 Heterotic Groups
		4.3.2 Predicting Heterosis
		4.3.3 Molecular Breeding
	4.4 Hybrid Breeding for Different Regions
	4.5 Conclusions
	References
5: Trait Mapping, Marker-Assisted Selection, and Introgression Breeding in Pearl Millet
	5.1 Introduction
	5.2 Marker-Assisted Breeding: A Tool for Crop Improvement
	5.3 Understanding the Genetic Basis of Complex Traits
	5.4 Prerequisites for a Successful Marker-Assisted Breeding Program
		5.4.1 Navigating the Marker Systems
		5.4.2 Marker-Trait Association
	5.5 Factors Influencing the Marker-Trait Association
		5.5.1 Type of the Mapping Population
		5.5.2 Type of Marker System
		5.5.3 Marker Density
		5.5.4 Population Size
		5.5.5 Heritability of the Trait
	5.6 Interaction Effects of the QTLs
		5.6.1 Epistasis
		5.6.2 QTL-by-Environment Interactions (QEIs)
			5.6.2.1 QTL-by-Season Interactions
			5.6.2.2 QTL-by-Year Interactions
			5.6.2.3 QTL-by-Population Interactions
	5.7 QTL Validation
		5.7.1 Fine Mapping
		5.7.2 Gene Expression Studies
		5.7.3 Use of Alternate Mapping Population
	5.8 Molecular Marker-Based Breeding Strategies
		5.8.1 Marker-Assisted Backcrossing (MABC)
			5.8.1.1 Foreground Selection
			5.8.1.2 Recombinant Selection
			5.8.1.3 Background Selection
	5.9 Marker-Assisted Gene Pyramiding
	5.10 Marker-Assisted Recurrent Selection (MARS)
	5.11 Conclusion
	References
6: Genomic Selection and Its Application in Pearl Millet Improvement
	6.1 Introduction
	6.2 Prediction Methods and Models
	6.3 Methods Used in Genomic Selection
		6.3.1 M1: General Combining Ability (GCA) Model (E+GP1+GP2)
		6.3.2 M2: General Plus-Specific Combining Ability Model (E+GP1+GP2+GP1xP2)
		6.3.3 M3: General Plus-Specific Combining Ability in Interaction with Environments Model (E+GP1+GP2+GP1xP2+GP1xE+GP2xE+GP1xP2x...
	6.4 Models Implied for Genomic Selection
	6.5 Trait Improvement
		6.5.1 Yield
		6.5.2 Grain Quality
	6.6 Biotic Stress Tolerance
		6.6.1 Disease Resistance
		6.6.2 Insect Resistance
	6.7 Abiotic Stress Tolerance
		6.7.1 Drought Tolerance
		6.7.2 Heat Tolerance
	6.8 Genomic Selection (GS) in Pearl Millet
	6.9 Implications and Future Prospects
	References
7: Genome Editing and Opportunities for Trait Improvement in Pearl Millet
	7.1 Introduction
	7.2 Basics of Genome Editing
	7.3 Precise Editing with CRISPR-Cas9
		7.3.1 Base Editing
		7.3.2 Prime Editing
	7.4 Some Spotlight Case Studies on Crop Improvement Through Genome Editing
	7.5 Harnessing Climate-Resilience and Nutritional Value of Pearl Millet by Genome Editing
		7.5.1 Pearl Millet Traits Improvement for Nutrition
		7.5.2 Pearl Millet Traits Improvement Related to Different Abiotic Stress
		7.5.3 Pearl Millets for Biofuel
	7.6 Bottlenecks to Use Genome Editing in Pearl Millet Improvement
	7.7 Conclusion and Future Prospective
	References
8: Omics-Based Approaches in Improving Drought Stress Tolerance in Pearl Millet
	8.1 Introduction
	8.2 Abiotic Stress
	8.3 Drought Stress
		8.3.1 Primary and Secondary Effects on Plants by Drought Stress
		8.3.2 Response
	8.4 Enhancement of Crop Productivity and Drought Tolerance Through Omics Technology Interventions
	8.5 Transcriptomics
		8.5.1 Transcriptomics Techniques
		8.5.2 Transcriptomics Application in Imparting Drought Tolerance
	8.6 Proteomics
		8.6.1 Proteomics Techniques
		8.6.2 Application of Proteomics Technologies
	8.7 Metabolomics
		8.7.1 Metabolomics Techniques
		8.7.2 Application of Metabolomic Technology
	8.8 Conclusion and Future Perspectives
	References
9: Genetic Biofortification of Pearl Millet: Trait Priority, Breeding and Genomic Progress
	9.1 Introduction
	9.2 Micronutrient Trait´s Prioritization
	9.3 Variability for Fe and Zn Content
	9.4 Micronutrient Phenotyping Progress
	9.5 Genetics of Micronutrients in Pearl Millet
	9.6 Micronutrient Traits Association
	9.7 Biofortified Breeding Approaches
		9.7.1 Open-Pollinated Variety Breeding
		9.7.2 Hybrid Breeding
		9.7.3 Biofortified Pearl Millet Cultivars
		9.7.4 Genomic Progress and Application Prospects
		9.7.5 Iron Bioavailability in Biofortified Pearl Millet
	9.8 Conclusion
	References
10: Physiological and Molecular Bases of Drought and Heat Tolerance in Pearl Millet
	10.1 Climate Change
	10.2 Effects of Drought and Heat on Pearl Millet and Annual Plant Growth and Development
		10.2.1 Drought Effects
		10.2.2 Heat Effects
		10.2.3 Heat and Drought Combined Effects
			10.2.3.1 Mechanisms of Adaptation to Climate Variability (Drought and Heat) in Pearl Millet
				Leaf Rolling and Stomatal Conductance
				Root Characteristics
				Osmotic Adjustment
				Transpiration Efficiency
	10.3 Molecular Basis of Stress Tolerance
	10.4 Breeding Pearl Millet for Drought and Heat Tolerance
	10.5 Conclusion
	References
11: Forage Pearl Millet: Issues and Strategies for Genetic Improvement
	11.1 Introduction
	11.2 Origin and Distribution
	11.3 Male Sterility System
	11.4 Contribution of Crop Wild Relatives (CWR) in Pearl Millet Breeding
	11.5 Fodder Quality and Nutritive Value
	11.6 BajraxNapier Hybrid
	11.7 Pennisetum Hybrid (P. glaucum x P. squamulatum)
	11.8 Apomixis
	11.9 Breeding Aspect
	11.10 Forage Traits
	11.11 Genetics of Important Pearl Millet Diseases
	11.12 Pearl Millet Downy Mildew
	11.13 Pearl Millet Blast
	11.14 Discussion and Conclusion
	References
12: The Major Diseases of Pearl Millet in the Indian Sub-continent: Current Scenarios in Resistance and Management Strategies
	12.1 Introduction
	12.2 Fungal Diseases of Pearl Millet
		12.2.1 Downy Mildew or Green Ear Disease
		12.2.2 Pathogen Biology
		12.2.3 Disease Symptoms
		12.2.4 Disease Cycle
		12.2.5 Disease Management
			12.2.5.1 Cultural Control
			12.2.5.2 Biological Control
			12.2.5.3 Chemical Control
			12.2.5.4 Host Resistance
	12.3 Smut
		12.3.1 Pathogen Biology
		12.3.2 Disease Cycle
		12.3.3 Disease Symptoms
		12.3.4 Disease Management
			12.3.4.1 Chemical Control
			12.3.4.2 Biological Control
			12.3.4.3 Host Resistance
	12.4 Ergot
		12.4.1 Pathogen Biology
		12.4.2 Disease Symptoms
		12.4.3 Disease Cycle
		12.4.4 Disease Management
			12.4.4.1 Cultural Control
			12.4.4.2 Chemical Control
			12.4.4.3 Biological Control
			12.4.4.4 Host Resistance
	12.5 Rust
		12.5.1 Pathogen Biology
		12.5.2 Disease Symptoms
		12.5.3 Disease Cycle
		12.5.4 Disease Management
			12.5.4.1 Cultural Practices
			12.5.4.2 Chemical Management
			12.5.4.3 Biological Control
			12.5.4.4 Host Resistance
	12.6 Blast
		12.6.1 Pathogen Biology
		12.6.2 Disease Symptoms
		12.6.3 Disease Cycle
		12.6.4 Disease Management
			12.6.4.1 Cultural Practices
			12.6.4.2 Chemical Control
			12.6.4.3 Biological Control
			12.6.4.4 Host Resistance
	12.7 Conclusion
	References
13: Pearl Millet Breeding for Enhancing Yield and Stability: Strategies, Achievements, and Perspectives
	13.1 Introduction
	13.2 Production Constraints
	13.3 Strategies for Enhancing Yield
		13.3.1 Heterosis Exploitation
		13.3.2 Strategic Use of Germplasm Resources
			13.3.2.1 Targeting Specific Phenotypic Traits
			13.3.2.2 Searching for Sources of Disease Resistance
			13.3.2.3 Searching for Adaptation Traits
			13.3.2.4 Sources of Nutritional Traits
		13.3.3 Trait Prioritization
		13.3.4 Plant Type
	13.4 Strategies for Enhancing Stability
		13.4.1 Abiotic Stress Resilience
			13.4.1.1 Drought Tolerance
			13.4.1.2 Heat Tolerance
		13.4.2 Biotic Stresses Resistance
			13.4.2.1 Diseases Resistance
			13.4.2.2 Insect-Pests Resistance
		13.4.3 Regional Adaptation
	13.5 Achievements and Impact
		13.5.1 Deployment of Improved Cultivars and Outcome
		13.5.2 Impact of Breeding
		13.5.3 Realized Yield Gains in Pearl Millet Vis-à-Vis Other Cereals
	13.6 Future Perspectives
		13.6.1 Achieving Higher Yields
		13.6.2 Targeting Greater Stability
	References
14: Salinity Stress in Pearl Millet: From Physiological to Molecular Responses
	14.1 Introduction
	14.2 Physiological Basis of Salt Stress Tolerance in Pearl Millet
	14.3 Effect of Salinity Stress on Pearl Millet: Morpho-Physiological and Biochemical Changes
		14.3.1 Germination and Seedling Establishment
		14.3.2 Growth and Development Changes Affected by Salinity Stress
		14.3.3 Salinity and Ionic Toxicity Effects in Plants
		14.3.4 Changes in Plant Water Relations
		14.3.5 Salinity and Oxidative Stress
		14.3.6 Photosynthetic Pigments and Photosynthesis
		14.3.7 Nutrient Imbalance
	14.4 Strategies of Adaptation and Tolerance of Pearl Millet to Salt Stress
		14.4.1 Accumulation of Osmolytes or Compatible Solutes
		14.4.2 Polyamines
		14.4.3 Hormonal Regulation
		14.4.4 Antioxidant Regulation
			14.4.4.1 Case Study on the Response of Pearl Millet to Varying Levels of Salt Stress
	14.5 Molecular Characterization of Salt Stress
		14.5.1 Molecular Basis of Salt Tolerance in Plants
		14.5.2 Transcription Factors in Salt Tolerance Mechanism
		14.5.3 Transgenics for Enhancing Salinity Tolerance
		14.5.4 Understanding the Molecular Basis of Salinity Tolerance in Pearl Millet
		14.5.5 High-Throughput Approaches for Phenotyping Salt Stress Tolerance in Pearl Millet
	14.6 Breeding Strategies for Salt Stress Tolerance in Pearl Millet
	14.7 Salinity Management Practices and Recent Advances for Stress Tolerance
		14.7.1 Agronomic Approaches
		14.7.2 Seed Priming
		14.7.3 Plant Growth-Promoting Rhizobacteria (PGPR) to Ameliorate Salinity Stress
		14.7.4 Application of Hormones
	14.8 Conclusion and Future Perspectives
	References
15: Weed and Striga Management in Pearl Millet Production Systems in Sub-Saharan Africa
	15.1 Introduction
	15.2 Weed Management in Pearl Millet Production Systems in Sub-Saharan Africa
		15.2.1 Weed Flora of Pearl Millet Cropping Systems
		15.2.2 Grain Yield Losses Attributed to Weeds
		15.2.3 Control Options
			15.2.3.1 Manual Weeding
			15.2.3.2 Mechanical Weeding
			15.2.3.3 Chemical Control
	15.3 Parasitic Weeds Management in Pearl Millet Farming Systems in SSA
		15.3.1 Striga Distribution and Economic Incidence
		15.3.2 Farmers´ Knowledge and Approaches Towards Striga Management
		15.3.3 Conventional Strategies Towards Striga Control
			15.3.3.1 Cultural Methods
			15.3.3.2 Chemical Control
			15.3.3.3 Biological Control
			15.3.3.4 Genetic Control
			15.3.3.5 Integrated Striga Management (ISM)
		15.3.4 Emerging Strategies Toward Ending with Striga Problem
	15.4 Gaps and Future Research Needs
	References
16: Crop Simulation Models for Climate Change Adaptation in Pearl Millet
	16.1 Introduction
	16.2 Pearl Millet Responses to Climate Change
		16.2.1 Responses of Pearl Millet to Heat and Drought Stress
			16.2.1.1 Morphological and Phenological Responses
			16.2.1.2 Water and Nutrient Relations
			16.2.1.3 Photosynthesis
			16.2.1.4 Assimilate Partitioning
			16.2.1.5 Oxidative Stress and Membrane Damage
			16.2.1.6 Yield
		16.2.2 Mechanisms Associated with Stress Tolerance
			16.2.2.1 Adaptations to Drought Stress
				Escape Mechanisms
				Dehydration Avoidance
				Osmoregulation
				Antioxidant System
				Phytohormones
				Adaptations to High Temperature Stress
				Transpirational Cooling
				Heat Shock Proteins
				Stay Green
	16.3 Crop Simulation Models
		16.3.1 Crop Models for Climate Change
		16.3.2 Simulation of Climate Change Impacts and Adaptation in Pearl Millet
	16.4 Conclusion
	References
17: Modern Crop Management Practices for Pearl Millet Cultivation in Semi-Arid Africa
	17.1 Introduction
	17.2 Overview of Millet Production Systems in Semi-Arid Africa
		17.2.1 Intercropping Systems
		17.2.2 Agroforestry System
		17.2.3 Crop Rotation Systems
		17.2.4 Bush Fallow Systems
	17.3 Challenges Facing Millet Production
		17.3.1 Abiotic Challenges
			17.3.1.1 Temperature
			17.3.1.2 Rainfall Distribution in Time and Space
			17.3.1.3 Soil Physical Characteristics
			17.3.1.4 Soil Chemical Characteristics (Nutrient Deficiency-N, P, K)
			17.3.1.5 Biotic Challenges
				Pearl Millet Downy Mildew (Sclerospora graminicola)
				Cercospora Leaf Spot (Cercospora penniseti)
				Pearl Millet Ergot (Claviceps fusiformis)
				Rust (Puccinia substriata)
				Smut (Tolyposporium penicillariae Bref)
				Striga (Striga hermonthica)
	17.4 Improving Millet Production Under Challenging Conditions
		17.4.1 Management Practices to Improve Millet Production
			17.4.1.1 Soil Fertility Management
			17.4.1.2 Micro-Dosing Application of Organic and Inorganic Fertilizer
			17.4.1.3 Crop Residues Mulching
			17.4.1.4 Millet Production and Animal Corralling
			17.4.1.5 Millet Performance Underwater Harvesting Technologies (Water and Nutrient Interaction)
	17.5 Cropping System
		17.5.1 Integrated System for Millet Production DEF (Dryland Eco-Farm)
		17.5.2 Tree-Crop Association
		17.5.3 Millet Leguminous Crops Intercropping
	17.6 Opportunities for Increased Millet Productivity
	17.7 General Analysis and Conclusion
	References
18: Modern Crop Management Practices for Pearl Millet Cultivation in Asia
	18.1 Introduction
		18.1.1 Crop Cultivars
		18.1.2 Sowing Time
		18.1.3 Plant Population, Spacing, and Seed Rate
		18.1.4 Land Preparation (Tillage)
		18.1.5 Manures and Fertilizers
			18.1.5.1 Manures
			18.1.5.2 Bio-fertilizers
			18.1.5.3 Liquid-Based Bio-fertilizers
			18.1.5.4 Chemical Fertilizers
				Macronutrients
				Micronutrients
		18.1.6 Moisture Conservation and Irrigation
			18.1.6.1 Rainwater Harvesting
			18.1.6.2 Irrigation
		18.1.7 Weed Management
		18.1.8 Cropping Systems
		18.1.9 New Trends in Pearl Millet Cultivation: Organic Production and Mechanical Harvesting
	18.2 Future Research and Conclusion
	References
19: Hybrid Seed Generation System Management to Ensure the Seed Quality in Pearl Millet
	19.1 Introduction
	19.2 Flowering, Pollination, and Genetic Mechanism of Hybrid Seed Production
		19.2.1 Flowering
		19.2.2 Pollination
		19.2.3 Genetic Mechanism of Hybrid Seed Production
	19.3 Seed Generation System and Production Chain of Pearl Millet Hybrids
		19.3.1 Nucleus Seed Production of Pearl Millet Parental Lines (A-, B-, and R-Lines)
		19.3.2 Breeder Seed Production of Pearl Millet Parental Lines (A-, B-, and R-Lines)
			19.3.2.1 Selection of Site and Season
			19.3.2.2 Requirement of Isolation Distance
			19.3.2.3 Sowing Method
			19.3.2.4 Planting Ratio of A- and B-Lines
			19.3.2.5 Synchronization of A- and B-Lines
			19.3.2.6 Rogueing
			19.3.2.7 Harvesting, Threshing, and Processing
			19.3.2.8 Forecasting Land and Seed Requirements
		19.3.3 Foundation Seed Production
	19.4 Pearl Millet Hybrid Seed Production
		19.4.1 Influence of Agro-Climatic Factors on Flowering and Seed Set
		19.4.2 Location and Field Requirement
		19.4.3 Isolation Distance, Cropping History, and Field Requirement
		19.4.4 Planting Row Ratio and Border Rows
		19.4.5 Synchronization of Flowering in Male and Female Rows
		19.4.6 Rogueing
		19.4.7 Field Inspection
	19.5 Conclusion
	References
20: Traditional Varieties of Pearl Millet and Food Diversity
	20.1 Introduction
	20.2 Community Conservation of Pearl Millet
	20.3 Traditional Varieties of Pearl Millet and Food Security
		20.3.1 Local Landraces and Their Popular Vernacular Names of Pearl Millet in India as per National Genebank (NGB), ICAR-Nation...
		20.3.2 Popular Vernacular Names of Pearl Millet Among the Accessions Conserved at Millets Genebank, ICAR-IndianInstitute ofMil...
	20.4 Health Benefits of Pearl Millet
	20.5 How to Cook Pearl Millet (Bajra)?
		20.5.1 Food Products from Bajra
	20.6 Pearl Millet Recipes
		20.6.1 Millet Sushi Rolls
		20.6.2 Rajasthani Bajra Khichdi
		20.6.3 Bajra Raab
		20.6.4 Rajasthani Bajre Ki Khatti Raabdi
	References
21: Enhancing Shelf Life of Pearl Millet Flour
	21.1 Introduction
	21.2 Shelf Life of Pearl Millet Flour
	21.3 Processing Techniques for Shelf-Life Extension of Pearl Millet Flour
		21.3.1 Mechanical Operations
			21.3.1.1 Decortication
			21.3.1.2 Milling and Sieving
			21.3.1.3 Fermentation
			21.3.1.4 Malting
			21.3.1.5 Preservatives
				Antioxidants
				Essential Oils
			21.3.1.6 Acid Treatment
		21.3.2 Thermal Treatments
			21.3.2.1 Dry Heat Treatment
			21.3.2.2 Hydrothermal Processing
			21.3.2.3 Microwave Processing
			21.3.2.4 Infrared Heating
		21.3.3 Non-thermal Processing Techniques
			21.3.3.1 Gamma Irradiation
			21.3.3.2 High-Pressure Processing (HPP)
	21.4 Shelf Life of Value-Added Products
	21.5 Storage Periods/Structures
	21.6 Packaging Material
	21.7 Genetics and Breeding Approaches for Addressing Rancidity Problems in Pearl Millet
	21.8 Conclusion
	References
22: Biofuel Opportunities in Pearl Millet
	22.1 Introduction
		22.1.1 Current Fuel Statistics
	22.2 Taxonomy, Botanical Description, and Reproductive Biology
		22.2.1 Taxonomy
		22.2.2 Morphological Description
		22.2.3 Pollination Behavior
	22.3 Genetics of Biofuel Traits
	22.4 Genomics
	22.5 Breeding for High Biomass
		22.5.1 Breeding Objectives
		22.5.2 Breeding Methodology
		22.5.3 Breeding for High Biomass
	22.6 Brown Midrib Pearl Millet
	22.7 Grain-Based Ethanol
	22.8 Crop Residues and Their Utilization
		22.8.1 Pearl Millet Wastes
		22.8.2 Wastes Production Potential and Their Current Uses
		22.8.3 Briquettes
		22.8.4 Biogas
		22.8.5 Bio-Oil and Biochar
		22.8.6 Bioethanol
		22.8.7 Pretreatment Methods for Ethanol Production
		22.8.8 Biorefinery Technologies
	22.9 Challenges and Perspectives
	References
23: An Ecosystem Approach to Promoting Pearl Millet: Balancing Demand and Supply
	23.1 Millets and Their Importance in Food Security
		23.1.1 Millet Production: Global Trend
			23.1.1.1 Pearl Millet: Global Trends
		23.1.2 Millet Production: Trends in India
		23.1.3 Pearl Millet: Trends in India
		23.1.4 Millets: Decreasing Ratio of Consumption
		23.1.5 Millet Production in India: Constraints
		23.1.6 Food and Health
			23.1.6.1 Hunger and Food System
		23.1.7 Current Challenges to, and Demand from, Agriculture
			23.1.7.1 Nutrition for the Consumer
			23.1.7.2 Sustainability in Production
			23.1.7.3 Support to Livelihood Systems
			23.1.7.4 Income for Farmers
	23.2 Pearl Millet
		23.2.1 Origin of Pearl Millet
		23.2.2 Importance of Pearl Millet
		23.2.3 Climate Resilience
		23.2.4 Nutritionally Rich
		23.2.5 Income Returns and Livelihood Options: Many an Opportunity
		23.2.6 Promoting Pearl Millet
		23.2.7 Technological Interventions
		23.2.8 Research and Development (RandD) Interventions
		23.2.9 Post-Harvest Interventions
		23.2.10 Policy Interventions
	23.3 Conclusion and Recommendation
	References




نظرات کاربران