دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vilas A Tonapi (editor), Nepolean Thirunavukkarasu (editor), SK Gupta (editor), Prakash I Gangashetty (editor), OP Yadav (editor) سری: ISBN (شابک) : 981995889X, 9789819958894 ناشر: Springer سال نشر: 2024 تعداد صفحات: 632 [623] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Pearl Millet in the 21st Century: Food-Nutrition-Climate resilience-Improved livelihoods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارزن مروارید در قرن بیست و یکم: غذا- تغذیه- انعطاف پذیری آب و هوا- بهبود معیشت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword I Foreword II Foreword III Contents About the Editor 1: Current Trends and Future Prospects in Global Production, Utilization, and Trade of Pearl Millet 1.1 Introduction 1.1.1 Importance of Pearl Millet 1.2 Global Millet Production Domains 1.2.1 Potential Welfare Benefits 1.2.2 Millet Types and Their Distribution Box 1.1 Types of Millets and Their Distribution 1.3 Global Millet Production Regions 1.3.1 Region-Wise Production and Productivity Trends 1.3.2 Major Millet-Producing Countries 1.4 Global Utilization of Millets Box 1.2 Utilization of Different Types of Millets 1.5 Global Millet Trade 1.5.1 The Regional Trend in Millet Imports 1.5.2 Regional Millet Export Trend 1.5.3 Major Millet Export and Import Countries in the World 1.6 Future Prospects in Global Millet Supply and Demand 1.7 Constraints in Millet Production 1.7.1 Biotic Constraints 1.7.2 Abiotic Constraints 1.7.3 Socio-Economic Constraints 1.8 Opportunities for Demand Expansion 1.9 Conclusions Annexure: IMPACT Model References 2: Status and Utility of Pearl Millet Germplasm for Crop Improvement 2.1 Introduction 2.2 Gene Pool and Races of Pearl Millet 2.3 Germplasm Resources Conservation Status 2.3.1 Conservation Strategy 2.3.2 In Situ Conservation 2.3.3 Ex Situ Conservation 2.3.3.1 Global Status 2.3.3.2 Gap Analysis in the Ex Situ Collection 2.3.4 Germplasm Subsets 2.3.5 Characterisation and Evaluation of Pearl Millet 2.4 Trait Variability and Promising Sources 2.4.1 Morpho-Agronomic Traits 2.4.2 Grain Nutrients and Quality Traits 2.4.3 Variation for Fodder Yield and Quality Traits 2.4.4 Abiotic Stress Tolerance 2.4.5 Biotic Stress Resistance 2.4.6 Crop Wild Relatives as a Source of Important Traits 2.5 Germplasm Utilisation in Crop Improvement 2.6 Summary References 3: Milestones in Biology, Genetics, and Breeding of Pearl Millet 3.1 Introduction 3.2 Pearl Millet Biology 3.2.1 Center of Origin and Taxonomy 3.2.2 Establishing Outcrossing Nature of Pearl Millet 3.2.3 Understanding Growth and Development Stages 3.2.4 Photoperiod Response and Day-Length Sensitivity 3.2.5 Environmental Adaptation 3.3 Pearl Millet Genetics 3.3.1 Heterosis: High Magnitude in a Positive Direction 3.3.2 Discovery of Cytoplasmic-Nuclear Male Sterility 3.3.3 Fertility Restorers in Hybrids 3.3.4 Genetic Linkage Groups 3.3.5 Wide Hybridization 3.3.6 d2 Dwarfing Genes 3.3.7 Apomixis 3.3.8 Doubled Haploids 3.3.9 Genome Sequencing 3.4 Pearl Millet Breeding 3.4.1 Mass and Recurrent Selection 3.4.2 Chance Hybrids Using Protogynous Flowering 3.4.3 Introduction of Cytoplasmic Male-Sterile (MS) Lines in India 3.4.4 First CMS-Based Commercial Hybrid 3.4.5 Alternative CMS Sources 3.4.6 Cultivar Development 3.4.7 Delineation of Production Area into Mega-Environments 3.4.8 Creation of Genebank Having World Pearl Millet Collection 3.4.9 Establishing Core and Mini-Core Collections 3.4.10 First Marker-Assisted Selection (MAS) Product in India 3.4.11 First Biofortified Variety in India and Africa 3.4.12 Heterotic Pools 3.4.13 Hybrid Breeding in Africa 3.4.14 Seed Production Innovations 3.5 Institutionalization of Pearl Millet Research 3.6 Conclusions References 4: Advances in Pearl Millet Hybrid Breeding and Development of Parental Lines 4.1 Introduction: Hybrids, a Better Option in Pearl Millet 4.2 Development of Hybrid Parents 4.2.1 Trait Prioritization Under Different Product Profiles/Market-Segments 4.2.1.1 Seed Parents 4.2.1.2 Restorer Parents 4.2.2 Genetic Diversification 4.2.3 Cytoplasmic Diversification 4.2.3.1 CMS Search and Characterization 4.2.3.2 Cytoplasmic Diversification of Seed and Restorer Parents 4.2.4 Breeding Methods 4.2.4.1 Line Breeding to Develop B- and R-Lines 4.2.4.2 Selection for DM and Blast Resistance 4.2.4.3 Testing for Combining Ability 4.2.4.4 A-Line Development Conversion Stage Conversion Method Selection During the Conversion Process 4.2.4.5 Improving Adaptation and Nutritional Traits 4.3 Enhancing Magnitude of Heterosis 4.3.1 Heterotic Groups 4.3.2 Predicting Heterosis 4.3.3 Molecular Breeding 4.4 Hybrid Breeding for Different Regions 4.5 Conclusions References 5: Trait Mapping, Marker-Assisted Selection, and Introgression Breeding in Pearl Millet 5.1 Introduction 5.2 Marker-Assisted Breeding: A Tool for Crop Improvement 5.3 Understanding the Genetic Basis of Complex Traits 5.4 Prerequisites for a Successful Marker-Assisted Breeding Program 5.4.1 Navigating the Marker Systems 5.4.2 Marker-Trait Association 5.5 Factors Influencing the Marker-Trait Association 5.5.1 Type of the Mapping Population 5.5.2 Type of Marker System 5.5.3 Marker Density 5.5.4 Population Size 5.5.5 Heritability of the Trait 5.6 Interaction Effects of the QTLs 5.6.1 Epistasis 5.6.2 QTL-by-Environment Interactions (QEIs) 5.6.2.1 QTL-by-Season Interactions 5.6.2.2 QTL-by-Year Interactions 5.6.2.3 QTL-by-Population Interactions 5.7 QTL Validation 5.7.1 Fine Mapping 5.7.2 Gene Expression Studies 5.7.3 Use of Alternate Mapping Population 5.8 Molecular Marker-Based Breeding Strategies 5.8.1 Marker-Assisted Backcrossing (MABC) 5.8.1.1 Foreground Selection 5.8.1.2 Recombinant Selection 5.8.1.3 Background Selection 5.9 Marker-Assisted Gene Pyramiding 5.10 Marker-Assisted Recurrent Selection (MARS) 5.11 Conclusion References 6: Genomic Selection and Its Application in Pearl Millet Improvement 6.1 Introduction 6.2 Prediction Methods and Models 6.3 Methods Used in Genomic Selection 6.3.1 M1: General Combining Ability (GCA) Model (E+GP1+GP2) 6.3.2 M2: General Plus-Specific Combining Ability Model (E+GP1+GP2+GP1xP2) 6.3.3 M3: General Plus-Specific Combining Ability in Interaction with Environments Model (E+GP1+GP2+GP1xP2+GP1xE+GP2xE+GP1xP2x... 6.4 Models Implied for Genomic Selection 6.5 Trait Improvement 6.5.1 Yield 6.5.2 Grain Quality 6.6 Biotic Stress Tolerance 6.6.1 Disease Resistance 6.6.2 Insect Resistance 6.7 Abiotic Stress Tolerance 6.7.1 Drought Tolerance 6.7.2 Heat Tolerance 6.8 Genomic Selection (GS) in Pearl Millet 6.9 Implications and Future Prospects References 7: Genome Editing and Opportunities for Trait Improvement in Pearl Millet 7.1 Introduction 7.2 Basics of Genome Editing 7.3 Precise Editing with CRISPR-Cas9 7.3.1 Base Editing 7.3.2 Prime Editing 7.4 Some Spotlight Case Studies on Crop Improvement Through Genome Editing 7.5 Harnessing Climate-Resilience and Nutritional Value of Pearl Millet by Genome Editing 7.5.1 Pearl Millet Traits Improvement for Nutrition 7.5.2 Pearl Millet Traits Improvement Related to Different Abiotic Stress 7.5.3 Pearl Millets for Biofuel 7.6 Bottlenecks to Use Genome Editing in Pearl Millet Improvement 7.7 Conclusion and Future Prospective References 8: Omics-Based Approaches in Improving Drought Stress Tolerance in Pearl Millet 8.1 Introduction 8.2 Abiotic Stress 8.3 Drought Stress 8.3.1 Primary and Secondary Effects on Plants by Drought Stress 8.3.2 Response 8.4 Enhancement of Crop Productivity and Drought Tolerance Through Omics Technology Interventions 8.5 Transcriptomics 8.5.1 Transcriptomics Techniques 8.5.2 Transcriptomics Application in Imparting Drought Tolerance 8.6 Proteomics 8.6.1 Proteomics Techniques 8.6.2 Application of Proteomics Technologies 8.7 Metabolomics 8.7.1 Metabolomics Techniques 8.7.2 Application of Metabolomic Technology 8.8 Conclusion and Future Perspectives References 9: Genetic Biofortification of Pearl Millet: Trait Priority, Breeding and Genomic Progress 9.1 Introduction 9.2 Micronutrient Trait´s Prioritization 9.3 Variability for Fe and Zn Content 9.4 Micronutrient Phenotyping Progress 9.5 Genetics of Micronutrients in Pearl Millet 9.6 Micronutrient Traits Association 9.7 Biofortified Breeding Approaches 9.7.1 Open-Pollinated Variety Breeding 9.7.2 Hybrid Breeding 9.7.3 Biofortified Pearl Millet Cultivars 9.7.4 Genomic Progress and Application Prospects 9.7.5 Iron Bioavailability in Biofortified Pearl Millet 9.8 Conclusion References 10: Physiological and Molecular Bases of Drought and Heat Tolerance in Pearl Millet 10.1 Climate Change 10.2 Effects of Drought and Heat on Pearl Millet and Annual Plant Growth and Development 10.2.1 Drought Effects 10.2.2 Heat Effects 10.2.3 Heat and Drought Combined Effects 10.2.3.1 Mechanisms of Adaptation to Climate Variability (Drought and Heat) in Pearl Millet Leaf Rolling and Stomatal Conductance Root Characteristics Osmotic Adjustment Transpiration Efficiency 10.3 Molecular Basis of Stress Tolerance 10.4 Breeding Pearl Millet for Drought and Heat Tolerance 10.5 Conclusion References 11: Forage Pearl Millet: Issues and Strategies for Genetic Improvement 11.1 Introduction 11.2 Origin and Distribution 11.3 Male Sterility System 11.4 Contribution of Crop Wild Relatives (CWR) in Pearl Millet Breeding 11.5 Fodder Quality and Nutritive Value 11.6 BajraxNapier Hybrid 11.7 Pennisetum Hybrid (P. glaucum x P. squamulatum) 11.8 Apomixis 11.9 Breeding Aspect 11.10 Forage Traits 11.11 Genetics of Important Pearl Millet Diseases 11.12 Pearl Millet Downy Mildew 11.13 Pearl Millet Blast 11.14 Discussion and Conclusion References 12: The Major Diseases of Pearl Millet in the Indian Sub-continent: Current Scenarios in Resistance and Management Strategies 12.1 Introduction 12.2 Fungal Diseases of Pearl Millet 12.2.1 Downy Mildew or Green Ear Disease 12.2.2 Pathogen Biology 12.2.3 Disease Symptoms 12.2.4 Disease Cycle 12.2.5 Disease Management 12.2.5.1 Cultural Control 12.2.5.2 Biological Control 12.2.5.3 Chemical Control 12.2.5.4 Host Resistance 12.3 Smut 12.3.1 Pathogen Biology 12.3.2 Disease Cycle 12.3.3 Disease Symptoms 12.3.4 Disease Management 12.3.4.1 Chemical Control 12.3.4.2 Biological Control 12.3.4.3 Host Resistance 12.4 Ergot 12.4.1 Pathogen Biology 12.4.2 Disease Symptoms 12.4.3 Disease Cycle 12.4.4 Disease Management 12.4.4.1 Cultural Control 12.4.4.2 Chemical Control 12.4.4.3 Biological Control 12.4.4.4 Host Resistance 12.5 Rust 12.5.1 Pathogen Biology 12.5.2 Disease Symptoms 12.5.3 Disease Cycle 12.5.4 Disease Management 12.5.4.1 Cultural Practices 12.5.4.2 Chemical Management 12.5.4.3 Biological Control 12.5.4.4 Host Resistance 12.6 Blast 12.6.1 Pathogen Biology 12.6.2 Disease Symptoms 12.6.3 Disease Cycle 12.6.4 Disease Management 12.6.4.1 Cultural Practices 12.6.4.2 Chemical Control 12.6.4.3 Biological Control 12.6.4.4 Host Resistance 12.7 Conclusion References 13: Pearl Millet Breeding for Enhancing Yield and Stability: Strategies, Achievements, and Perspectives 13.1 Introduction 13.2 Production Constraints 13.3 Strategies for Enhancing Yield 13.3.1 Heterosis Exploitation 13.3.2 Strategic Use of Germplasm Resources 13.3.2.1 Targeting Specific Phenotypic Traits 13.3.2.2 Searching for Sources of Disease Resistance 13.3.2.3 Searching for Adaptation Traits 13.3.2.4 Sources of Nutritional Traits 13.3.3 Trait Prioritization 13.3.4 Plant Type 13.4 Strategies for Enhancing Stability 13.4.1 Abiotic Stress Resilience 13.4.1.1 Drought Tolerance 13.4.1.2 Heat Tolerance 13.4.2 Biotic Stresses Resistance 13.4.2.1 Diseases Resistance 13.4.2.2 Insect-Pests Resistance 13.4.3 Regional Adaptation 13.5 Achievements and Impact 13.5.1 Deployment of Improved Cultivars and Outcome 13.5.2 Impact of Breeding 13.5.3 Realized Yield Gains in Pearl Millet Vis-à-Vis Other Cereals 13.6 Future Perspectives 13.6.1 Achieving Higher Yields 13.6.2 Targeting Greater Stability References 14: Salinity Stress in Pearl Millet: From Physiological to Molecular Responses 14.1 Introduction 14.2 Physiological Basis of Salt Stress Tolerance in Pearl Millet 14.3 Effect of Salinity Stress on Pearl Millet: Morpho-Physiological and Biochemical Changes 14.3.1 Germination and Seedling Establishment 14.3.2 Growth and Development Changes Affected by Salinity Stress 14.3.3 Salinity and Ionic Toxicity Effects in Plants 14.3.4 Changes in Plant Water Relations 14.3.5 Salinity and Oxidative Stress 14.3.6 Photosynthetic Pigments and Photosynthesis 14.3.7 Nutrient Imbalance 14.4 Strategies of Adaptation and Tolerance of Pearl Millet to Salt Stress 14.4.1 Accumulation of Osmolytes or Compatible Solutes 14.4.2 Polyamines 14.4.3 Hormonal Regulation 14.4.4 Antioxidant Regulation 14.4.4.1 Case Study on the Response of Pearl Millet to Varying Levels of Salt Stress 14.5 Molecular Characterization of Salt Stress 14.5.1 Molecular Basis of Salt Tolerance in Plants 14.5.2 Transcription Factors in Salt Tolerance Mechanism 14.5.3 Transgenics for Enhancing Salinity Tolerance 14.5.4 Understanding the Molecular Basis of Salinity Tolerance in Pearl Millet 14.5.5 High-Throughput Approaches for Phenotyping Salt Stress Tolerance in Pearl Millet 14.6 Breeding Strategies for Salt Stress Tolerance in Pearl Millet 14.7 Salinity Management Practices and Recent Advances for Stress Tolerance 14.7.1 Agronomic Approaches 14.7.2 Seed Priming 14.7.3 Plant Growth-Promoting Rhizobacteria (PGPR) to Ameliorate Salinity Stress 14.7.4 Application of Hormones 14.8 Conclusion and Future Perspectives References 15: Weed and Striga Management in Pearl Millet Production Systems in Sub-Saharan Africa 15.1 Introduction 15.2 Weed Management in Pearl Millet Production Systems in Sub-Saharan Africa 15.2.1 Weed Flora of Pearl Millet Cropping Systems 15.2.2 Grain Yield Losses Attributed to Weeds 15.2.3 Control Options 15.2.3.1 Manual Weeding 15.2.3.2 Mechanical Weeding 15.2.3.3 Chemical Control 15.3 Parasitic Weeds Management in Pearl Millet Farming Systems in SSA 15.3.1 Striga Distribution and Economic Incidence 15.3.2 Farmers´ Knowledge and Approaches Towards Striga Management 15.3.3 Conventional Strategies Towards Striga Control 15.3.3.1 Cultural Methods 15.3.3.2 Chemical Control 15.3.3.3 Biological Control 15.3.3.4 Genetic Control 15.3.3.5 Integrated Striga Management (ISM) 15.3.4 Emerging Strategies Toward Ending with Striga Problem 15.4 Gaps and Future Research Needs References 16: Crop Simulation Models for Climate Change Adaptation in Pearl Millet 16.1 Introduction 16.2 Pearl Millet Responses to Climate Change 16.2.1 Responses of Pearl Millet to Heat and Drought Stress 16.2.1.1 Morphological and Phenological Responses 16.2.1.2 Water and Nutrient Relations 16.2.1.3 Photosynthesis 16.2.1.4 Assimilate Partitioning 16.2.1.5 Oxidative Stress and Membrane Damage 16.2.1.6 Yield 16.2.2 Mechanisms Associated with Stress Tolerance 16.2.2.1 Adaptations to Drought Stress Escape Mechanisms Dehydration Avoidance Osmoregulation Antioxidant System Phytohormones Adaptations to High Temperature Stress Transpirational Cooling Heat Shock Proteins Stay Green 16.3 Crop Simulation Models 16.3.1 Crop Models for Climate Change 16.3.2 Simulation of Climate Change Impacts and Adaptation in Pearl Millet 16.4 Conclusion References 17: Modern Crop Management Practices for Pearl Millet Cultivation in Semi-Arid Africa 17.1 Introduction 17.2 Overview of Millet Production Systems in Semi-Arid Africa 17.2.1 Intercropping Systems 17.2.2 Agroforestry System 17.2.3 Crop Rotation Systems 17.2.4 Bush Fallow Systems 17.3 Challenges Facing Millet Production 17.3.1 Abiotic Challenges 17.3.1.1 Temperature 17.3.1.2 Rainfall Distribution in Time and Space 17.3.1.3 Soil Physical Characteristics 17.3.1.4 Soil Chemical Characteristics (Nutrient Deficiency-N, P, K) 17.3.1.5 Biotic Challenges Pearl Millet Downy Mildew (Sclerospora graminicola) Cercospora Leaf Spot (Cercospora penniseti) Pearl Millet Ergot (Claviceps fusiformis) Rust (Puccinia substriata) Smut (Tolyposporium penicillariae Bref) Striga (Striga hermonthica) 17.4 Improving Millet Production Under Challenging Conditions 17.4.1 Management Practices to Improve Millet Production 17.4.1.1 Soil Fertility Management 17.4.1.2 Micro-Dosing Application of Organic and Inorganic Fertilizer 17.4.1.3 Crop Residues Mulching 17.4.1.4 Millet Production and Animal Corralling 17.4.1.5 Millet Performance Underwater Harvesting Technologies (Water and Nutrient Interaction) 17.5 Cropping System 17.5.1 Integrated System for Millet Production DEF (Dryland Eco-Farm) 17.5.2 Tree-Crop Association 17.5.3 Millet Leguminous Crops Intercropping 17.6 Opportunities for Increased Millet Productivity 17.7 General Analysis and Conclusion References 18: Modern Crop Management Practices for Pearl Millet Cultivation in Asia 18.1 Introduction 18.1.1 Crop Cultivars 18.1.2 Sowing Time 18.1.3 Plant Population, Spacing, and Seed Rate 18.1.4 Land Preparation (Tillage) 18.1.5 Manures and Fertilizers 18.1.5.1 Manures 18.1.5.2 Bio-fertilizers 18.1.5.3 Liquid-Based Bio-fertilizers 18.1.5.4 Chemical Fertilizers Macronutrients Micronutrients 18.1.6 Moisture Conservation and Irrigation 18.1.6.1 Rainwater Harvesting 18.1.6.2 Irrigation 18.1.7 Weed Management 18.1.8 Cropping Systems 18.1.9 New Trends in Pearl Millet Cultivation: Organic Production and Mechanical Harvesting 18.2 Future Research and Conclusion References 19: Hybrid Seed Generation System Management to Ensure the Seed Quality in Pearl Millet 19.1 Introduction 19.2 Flowering, Pollination, and Genetic Mechanism of Hybrid Seed Production 19.2.1 Flowering 19.2.2 Pollination 19.2.3 Genetic Mechanism of Hybrid Seed Production 19.3 Seed Generation System and Production Chain of Pearl Millet Hybrids 19.3.1 Nucleus Seed Production of Pearl Millet Parental Lines (A-, B-, and R-Lines) 19.3.2 Breeder Seed Production of Pearl Millet Parental Lines (A-, B-, and R-Lines) 19.3.2.1 Selection of Site and Season 19.3.2.2 Requirement of Isolation Distance 19.3.2.3 Sowing Method 19.3.2.4 Planting Ratio of A- and B-Lines 19.3.2.5 Synchronization of A- and B-Lines 19.3.2.6 Rogueing 19.3.2.7 Harvesting, Threshing, and Processing 19.3.2.8 Forecasting Land and Seed Requirements 19.3.3 Foundation Seed Production 19.4 Pearl Millet Hybrid Seed Production 19.4.1 Influence of Agro-Climatic Factors on Flowering and Seed Set 19.4.2 Location and Field Requirement 19.4.3 Isolation Distance, Cropping History, and Field Requirement 19.4.4 Planting Row Ratio and Border Rows 19.4.5 Synchronization of Flowering in Male and Female Rows 19.4.6 Rogueing 19.4.7 Field Inspection 19.5 Conclusion References 20: Traditional Varieties of Pearl Millet and Food Diversity 20.1 Introduction 20.2 Community Conservation of Pearl Millet 20.3 Traditional Varieties of Pearl Millet and Food Security 20.3.1 Local Landraces and Their Popular Vernacular Names of Pearl Millet in India as per National Genebank (NGB), ICAR-Nation... 20.3.2 Popular Vernacular Names of Pearl Millet Among the Accessions Conserved at Millets Genebank, ICAR-IndianInstitute ofMil... 20.4 Health Benefits of Pearl Millet 20.5 How to Cook Pearl Millet (Bajra)? 20.5.1 Food Products from Bajra 20.6 Pearl Millet Recipes 20.6.1 Millet Sushi Rolls 20.6.2 Rajasthani Bajra Khichdi 20.6.3 Bajra Raab 20.6.4 Rajasthani Bajre Ki Khatti Raabdi References 21: Enhancing Shelf Life of Pearl Millet Flour 21.1 Introduction 21.2 Shelf Life of Pearl Millet Flour 21.3 Processing Techniques for Shelf-Life Extension of Pearl Millet Flour 21.3.1 Mechanical Operations 21.3.1.1 Decortication 21.3.1.2 Milling and Sieving 21.3.1.3 Fermentation 21.3.1.4 Malting 21.3.1.5 Preservatives Antioxidants Essential Oils 21.3.1.6 Acid Treatment 21.3.2 Thermal Treatments 21.3.2.1 Dry Heat Treatment 21.3.2.2 Hydrothermal Processing 21.3.2.3 Microwave Processing 21.3.2.4 Infrared Heating 21.3.3 Non-thermal Processing Techniques 21.3.3.1 Gamma Irradiation 21.3.3.2 High-Pressure Processing (HPP) 21.4 Shelf Life of Value-Added Products 21.5 Storage Periods/Structures 21.6 Packaging Material 21.7 Genetics and Breeding Approaches for Addressing Rancidity Problems in Pearl Millet 21.8 Conclusion References 22: Biofuel Opportunities in Pearl Millet 22.1 Introduction 22.1.1 Current Fuel Statistics 22.2 Taxonomy, Botanical Description, and Reproductive Biology 22.2.1 Taxonomy 22.2.2 Morphological Description 22.2.3 Pollination Behavior 22.3 Genetics of Biofuel Traits 22.4 Genomics 22.5 Breeding for High Biomass 22.5.1 Breeding Objectives 22.5.2 Breeding Methodology 22.5.3 Breeding for High Biomass 22.6 Brown Midrib Pearl Millet 22.7 Grain-Based Ethanol 22.8 Crop Residues and Their Utilization 22.8.1 Pearl Millet Wastes 22.8.2 Wastes Production Potential and Their Current Uses 22.8.3 Briquettes 22.8.4 Biogas 22.8.5 Bio-Oil and Biochar 22.8.6 Bioethanol 22.8.7 Pretreatment Methods for Ethanol Production 22.8.8 Biorefinery Technologies 22.9 Challenges and Perspectives References 23: An Ecosystem Approach to Promoting Pearl Millet: Balancing Demand and Supply 23.1 Millets and Their Importance in Food Security 23.1.1 Millet Production: Global Trend 23.1.1.1 Pearl Millet: Global Trends 23.1.2 Millet Production: Trends in India 23.1.3 Pearl Millet: Trends in India 23.1.4 Millets: Decreasing Ratio of Consumption 23.1.5 Millet Production in India: Constraints 23.1.6 Food and Health 23.1.6.1 Hunger and Food System 23.1.7 Current Challenges to, and Demand from, Agriculture 23.1.7.1 Nutrition for the Consumer 23.1.7.2 Sustainability in Production 23.1.7.3 Support to Livelihood Systems 23.1.7.4 Income for Farmers 23.2 Pearl Millet 23.2.1 Origin of Pearl Millet 23.2.2 Importance of Pearl Millet 23.2.3 Climate Resilience 23.2.4 Nutritionally Rich 23.2.5 Income Returns and Livelihood Options: Many an Opportunity 23.2.6 Promoting Pearl Millet 23.2.7 Technological Interventions 23.2.8 Research and Development (RandD) Interventions 23.2.9 Post-Harvest Interventions 23.2.10 Policy Interventions 23.3 Conclusion and Recommendation References