دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Abdelwaheb Hannachi
سری: Springer Atmospheric Sciences
ISBN (شابک) : 3030670724, 9783030670726
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 624
[625]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Patterns Identification and Data Mining in Weather and Climate به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شناسایی الگوها و داده کاوی در آب و هوا و اقلیم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشرفت در قدرت کامپیوتر و سیستم های مشاهده منجر به تولید و تجمع آب و هوا در مقیاس بزرگ شده است.
Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes.
The topic of EOFs and associated pattern identification in
space-time data sets has gone through an extraordinary fast
development, both in terms of new insights and the breadth of
applications. We welcome this text by Abdel Hannachi who not
only has a deep insight in the field but has himself made
several contributions to new developments in the
last 15 years.
- Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A.
Now that weather and climate science is producing ever
larger and richer data sets, the topic of pattern extraction
and interpretation has become an essential part. This book
provides an up to date overview of the latest techniques and
developments in this area.
- Maarten Ambaum, Department of Meteorology, University of Reading, U.K.
This nicely and expertly written book covers a lot of
ground, ranging from classical linear pattern identification
techniques to more modern machine learning, illustrated with
examples from weather & climate science. It will be very
valuable both as a tutorial for graduate and postgraduate
students and as a reference text for researchers and
practitioners in the field.
- Frank Kwasniok, College of Engineering, University of Exeter, U.K.
C1 Preface Acknowledgements Contents 1 Introduction 2 General Setting and Basic Terminology 3 Empirical Orthogonal Functions 4 Rotated and Simplified EOFs 5 Complex/Hilbert EOFs 6 Principal Oscillation Patterns and Their Extension 7 Extended EOFs and SSA 8 Persistent, Predictive and Interpolated Patterns 9 Principal Coordinates or Multidimensional Scaling 10 Factor Analysis 11 Projection Pursuit 12 Independent Component Analysis 13 Kernel EOFs 14 Functional and Regularised EOFs 15 Methods for Coupled Patterns 16 Further Topics 17 Machine Learning A Smoothing Techniques B Introduction to Probability and Random Variables C Stationary Time Series Analysis D Matrix Algebra and Matrix Function E Optimisation Algorithms F Hilbert Space G Systems of Linear Ordinary Differential Equations H Links for Software Resource Material References Index