دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: John Rubenstein (editor), Pasko Rakic (editor), Bin Chen (editor), Kenneth Y. Kwan (editor) سری: ISBN (شابک) : 012814405X, 9780128144053 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 1084 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 65 مگابایت
در صورت تبدیل فایل کتاب Patterning and Cell Type Specification in the Developing CNS and PNS: Comprehensive Developmental Neuroscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مشخصات الگو و نوع سلول در CNS و PNS در حال توسعه: علوم اعصاب تکاملی جامع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مشخصات الگو و نوع سلول در CNS و PNS در حال توسعه، ویرایش دوم، جدیدترین نسخه در مجموعه علوم اعصاب تکاملی جامع، پیشرفت های اخیر در زمینه ژنتیک، مولکولی و روش های سلولی که افزایش گسترده ای در اطلاعات جدید ایجاد کرده اند. این کتاب یک به روز رسانی بسیار مورد نیاز را برای تأکید بر آخرین تحقیقات در این زمینه به سرعت در حال توسعه ارائه می دهد، و ویراستاران بخش جدید در مورد پیشرفت های تکنولوژیکی که امکان پیگیری تحقیقات جدید در مورد رشد مغز را فراهم می کند، بحث می کنند. این جلد بر الگوهای عصبی و مشخصات نوع سلول در سیستم عصبی مرکزی و محیطی در حال توسعه تمرکز دارد.
Patterning and Cell Type Specification in the Developing CNS and PNS, Second Edition, the latest release in the Comprehensive Developmental Neuroscience series, presents recent advances in genetic, molecular and cellular methods that have generated a massive increase in new information. The book provides a much-needed update to underscore the latest research in this rapidly evolving field, with new section editors discussing the technological advances that are enabling the pursuit of new research on brain development. This volume focuses on neural patterning and cell type specification in the developing central and peripheral nervous systems.
Cover Patterning and Cell Type Specification in the Developing CNS and PNS Copyright Contributors Part I: Induction and patterning of the CNS and PNS 1 - Morphogens, patterning centers, and their mechanisms of action 1.1 General principles of morphogen gradients 1.1.1 History of the morphogen and morphogenetic field 1.1.2 How morphogen gradients pattern tissues 1.1.3 How morphogens are distributed 1.1.4 How morphogen signaling is transduced and interpreted 1.1.5 How morphogen gradients are converted into sharp boundaries 1.1.6 Summary-general principles of morphogen gradients 1.2 Local signaling centers and probable morphogens in the telencephalon 1.2.1 Early forebrain patterning 1.2.2 The RPC 1.2.3 The telencephalic roof plate and cortical hem 1.2.4 The antihem 1.3 BMPs as morphogens in telencephalic patterning 1.3.1 Performance objectives for a BMP gradient in the dorsal telencephalon 1.3.2 Midline expression and homeogenetic expansion of BMP production 1.3.3 BMP signaling gradient in the dorsal telencephalon 1.3.4 BMPs as dorsal telencephalic morphogens 1.3.5 Linear conversion of BMP signaling by cortical cells 1.3.6 Nonlinear conversion of BMP signaling by DTM cells 1.3.7 Summary-the BMP signaling gradient 1.4 FGF8 as a morphogen in telencephalic patterning 1.5 Interactions among signaling centers in telencephalic patterning 1.5.1 FGF8, Shh, and BMP signaling 1.5.2 Cross-regulation of BMP, FGF, and WNT signaling 1.5.3 Interactions of Shh, FGFs, and Gli3 1.6 Morphogens in human brain disease 1.6.1 Holoprosencephaly and Kallmann syndrome 1.6.2 Gradients in holoprosencephaly neuropathology 1.6.3 Gradients in other human brain disorders References 2 - Telencephalon patterning 2.1 Introduction 2.2 Telencephalon induction 2.2.1 The anterior neural ridge 2.2.2 FGF signaling 2.2.3 Wnt antagonism 2.2.4 Interactions of low Wnt with FGFs and BMPs 2.3 Overview of early telencephalic subdivisions 2.4 Establishing dorsal versus ventral domains 2.4.1 Shh and Gli3, two key players 2.4.2 Foxg1 and FGFs cooperatively promote ventral development 2.4.3 Establishing the dorsal telencephalic domain 2.4.4 Sharpening the dorsal-ventral border 2.4.5 The olfactory bulbs 2.5 Boundary structures as organizing centers and CR cell sources 2.5.1 Nomenclature of domains in the early telencephalic neuroepithelium 2.5.2 Specification of the hem and the antihem 2.5.2.1 Molecular mechanisms that act to position and specify the cortical hem 2.5.2.2 Molecular mechanisms that act to specify and position the antihem 2.5.3 Cajal-Retzius cells arise from four telencephalic boundary structures 2.5.4 Organizer functions of telencephalic boundary structures 2.5.4.1 Rostral signaling center/septum 2.5.4.1.1 Hem 2.5.4.2 Antihem 2.6 Subdividing ventral domains 2.6.1 The striatum and pallidum 2.6.2 The amygdala 2.6.3 An evolutionary perspective for how the neocortex arose 2.6.4 Lineage and fate mapping in the ventral telencephalon 2.7 Conclusions Acknowledgments References 3 - Area patterning of the mammalian neocortex 3.1 Introduction 3.1.1 Basic principles 3.1.2 Classic neocortical area patterning models 3.2 Indications that intrinsic mechanisms pattern the neocortical primordium 3.3 Morphogens impart position to the neocortical primordium 3.3.1 Morphogen signaling 3.3.2 Neocortical patterning by FGFs 3.3.3 Fgf8 regulates neocortical guidance of thalamic axons 3.3.4 Neocortical patterning by the cortical hem 3.4 Patterning genes downstream of morphogen signaling 3.4.1 Emx2 and Pax6 3.4.2 Dmrt5/Dmrta2 3.4.3 Couptf1/Nr2f1 3.4.4 Sp8 3.4.5 Pbx 3.5 Do neocortical areas arise from dedicated progenitor cell pools? 3.5.1 Transcription factors known to pattern the NP appear in gradients, not domains 3.5.2 Mapping the cortical primordium with forebrain enhancers 3.6 The influence of thalamic innervation 3.6.1 Guidance of thalamocortical axons and area formation 3.6.2 Thalamic innervation determines the function of a cortical area 3.6.3 Effects of thalamocortical afferents on area size and cortical progenitor cells 3.6.4 Thalamic dependence of an area-specific feature 3.6.5 Two mechanisms united 3.7 Spontaneous activity and neocortical patterning 3.8 Conservation of patterning mechanisms among different mammalian species 3.9 Conclusions References 4 - Patterning of thalamus 4.1 Introduction 4.2 Insights into diencephalic patterning 4.2.1 Columnar and neuromeric models 4.2.2 Morphologic segmentation of the diencephalon in the prosomeric model 4.2.3 Molecular regionalization of the diencephalon 4.2.3.1 Prosomere 1 4.2.3.2 Prosomere 2: the epithalamic domain 4.2.3.3 Prosomere 3 4.3 Prosomere 2: the thalamic domain 4.3.1 Cell lineages in the p2 alar plate 4.3.2 Signaling molecules during the initial patterning phase 4.3.2.1 Shh 4.3.2.2 Wnt 4.3.2.3 Fibroblast growth factor 4.3.3 Transcription factor control for neuronal identity List of acronyms and abbreviations References 5 - Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer 5.1 Introduction: brief description about midbrain 5.2 Tectum laminar formation 5.3 Optic tectum as a visual center for the lower vertebrate 5.3.1 Retinotectal projection in a retinotopic manner 5.3.2 Polarity formation in the optic tectum 5.4 Development of midbrain from the mesencephalic brain vesicle 5.4.1 Transcription factors that determine the midbrain 5.4.2 Midbrain-hindbrain boundary formation 5.4.3 Diencephalon-mesencephalon boundary formation 5.4.4 Dorsoventral patterning in the midbrain 5.5 Isthmus organizer 5.5.1 Isthmus emanates organizing signal 5.5.2 Competence of the neural tube to Fgf8 signaling is determined by preexisting transcription factors 5.5.3 Intracellular signal transduction 5.5.4 How tectum and cerebellum are organized by isthmus organizing signal? 5.6 Concluding remarks List of abbreviations of genes and molecules List of abbreviations (general) Glossary References 6 - Cerebellar patterning 6.1 Introduction 6.2 Early formation of cerebellum 6.2.1 Morphogenetic aspect of first steps of cerebellar formation 6.2.2 Molecular mechanisms underlying initial formation of cerebellum 6.3 Three types of cerebellar patterning in adult mammals 6.3.1 Cerebellar anterior-posterior patterning 6.3.1.1 Lobes 6.3.1.2 Lobules (I-X) 6.3.1.3 Functional roles of lobes 6.3.2 Cerebellar medial-lateral patterning 6.3.2.1 Parasagittal zones 6.3.2.2 Parasagittal stripes 6.3.2.3 Correspondence between parasagittal zones and parasagittal stripes 6.3.2.4 Functional roles of parasagittal zones and stripes 6.3.3 Cerebellar outer-inner patterning 6.3.3.1 The molecular layer 6.3.3.2 The Purkinje cell layer 6.3.3.3 The granular layer 6.3.3.4 The white matter 6.3.3.5 The cerebellar nuclei 6.3.3.6 Roles of cerebellar outer-inner patterning 6.4 Formation of cerebellar patterning 6.4.1 Formation of cerebellar anterior-posterior patterning 6.4.1.1 Formation of lobes and lobules 6.4.1.2 Cellular mechanisms underlying the formation of lobes and lobules 6.4.2 Formation of cerebellar medial-lateral patterning 6.4.2.1 Formation of parasagittal zones 6.4.2.2 Cellular and molecular mechanisms underlying the formation of parasagittal zones 6.4.2.3 Formation of parasagittal stripes 6.4.2.4 Critical roles of Purkinje cell birth date in the formation of embryonic and adult parasagittal stripes and parasagittal zones 6.4.3 Formation of cerebellar outer-inner patterning 6.4.3.1 Formation of the molecular layer 6.4.3.2 Formation of the Purkinje cell layer 6.4.3.3 Formation of the granular layer 6.4.3.4 Formation of the white matter and the cerebellar nuclei 6.4.3.5 Mechanisms underlying the control of neuronal migration 6.4.3.6 The deficits of neuronal migration by exposure to toxic substances and natural environmental factors result in abnormal O-I ... References 7 - Patterning and generation of neural diversity in the spinal cord 7.1 Introduction 7.2 Spatial signals and the generation of neuronal diversity 7.2.1 Dorsoventral patterning and the induction of progenitor domains 7.2.1.1 Induction of neural progenitor ventral fate: Shh signaling 7.2.1.2 Induction of dorsal progenitor fate: Bmp and Wnt signaling 7.2.2 Rostrocaudal patterning and regional identity 7.2.2.1 Rostrocaudal antiparallel signaling 7.2.2.2 Hox function in neuronal diversity 7.3 Transcription factor combinatorial codes 7.3.1 Transcriptional codes in spinal cord progenitor fate 7.3.2 Transcription factor combinatorial codes in the diversification of postmitotic motor neurons 7.3.3 Transcriptional signatures in spinal cord interneuron diversification 7.4 Local signals and cell-cell interactions 7.4.1 The role of notchdelta signaling in interneuron and motor neuron subtype specification 7.4.2 Retinoid signaling in motor neuron subtype specification 7.5 Temporal signals in the specification of spinal cord glia 7.5.1 Specification of oligodendrocytes 7.5.2 Astrogenesis in the spinal cord 7.6 Application of spinal cord developmental programs to advance therapies for human diseases 7.7 Conclusions List of abbreviations Glossary References 8 - Formation and maturation of neuromuscular junctions 8.1 Introduction 8.2 The neuromuscular junction is comprised of three cell types 8.3 Origin and initial interaction among cells that form the neuromuscular junction 8.4 Formation of a differentiated postsynaptic membrane: the agrin-MuSK hypothesis 8.5 Interplay between agrin and ACh in sculpting the postsynaptic region 8.6 Molecules involved in nAChR prepatterning 8.7 Additional molecules important for clustering and stabilizing developing neuromuscular junctions 8.8 Synapse elimination at the neuromuscular junction 8.9 Synapse elimination: structural and functional changes at neuromuscular junctions 8.10 Synapse elimination: activity-dependent competition and molecular mechanisms 8.11 Synapse elimination: role of T/PSCs 8.12 Maturation and maintenance of neuromuscular junctions 8.13 Summary List of abbreviations References 9 - Neural induction of embryonic stem/induced pluripotent stem cells 9.1 Introduction 9.2 Introduction to embryonic stem cells and induced pluripotent stem cells 9.2.1 Reprogramming 9.2.2 Discovery of induced pluripotent stem cells 9.3 Neural induction 9.4 Patterning of neural progenitors 9.4.1 Neuronal progenitor specification along the D-V axis 9.4.2 Neuronal progenitor specification along the A-P axis 9.4.3 Patterning using multiple morphogens gradients 9.4.4 Temporal patterning 9.5 Differentiation to specific regional identities 9.5.1 Differentiation to forebrain cell types 9.5.1.1 Cerebral cortex 9.5.1.2 Hippocampus 9.5.1.3 Basal ganglia 9.5.2 Differentiation to midbrain cell types 9.5.3 Differentiation to hindbrain cell types 9.5.4 Differentiation to spinal cord cell types 9.6 Differentiation to neural crest stem cells 9.7 Differentiation to astrocytes and oligodendrocytes 9.7.1 Astrocytes 9.7.2 Oligodendrocytes 9.8 Direct conversion of fibroblasts to induced neurons 9.9 Conclusion Acknowledgment References 10 - Brain organoids as a model system for human neurodevelopment in health and disease 10.1 Recapitulation of in vivo neurodevelopment 10.1.1 Stage I: Neural induction and patterning 10.1.2 Stage II: Lumen formation and apical-basal polarity 10.1.3 Stage III: Proliferation of neural progenitors, interkinetic nuclear motion, and cortical expansion 10.1.4 Stage IV: Neurogenesis, cortical layers formation, and neuronal migration 10.1.5 Stage V: Neuronal maturation and network activity 10.1.6 Evolutionary neurodevelopmental biology in organoids 10.2 Organoids for neurodevelopmental disease modeling 10.2.1 Modeling diseases associated with brain structure 10.2.1.1 Microcephaly (small brains)-genetic mutations 10.2.1.2 Microcephaly-ZIKA virus, mechanisms, and potential therapies 10.2.1.3 Macrocephaly (large brains) 10.2.1.3.1 Lissencephaly (smooth brain) 10.2.2 Modeling of neuropsychiatric disorders 10.2.2.1 Autism spectrum disorders and schizophrenia Acknowledgments References 11 - Formation of gyri and sulci 11.1 Introduction 11.2 Timing of the formation of gyri and sulci 11.3 Cortical folding in evolution 11.4 Cellular mechanisms of cortical folding 11.4.1 Outer subventricular zone and basal progenitors 11.4.2 Gene expression profiles 11.4.3 Human- and primate-specific genes 11.4.4 Differential growth and proliferation 11.4.4.1 Cell cycle and the length of the neurogenic period 11.4.4.2 Growth patterns 11.4.4.3 Migration and cell adhesion 11.5 Mechanical mechanisms 11.6 Model systems in which to study cortical folding 11.6.1 Cerebral organoids 11.6.2 Ferret 11.6.3 Nonhuman primates 11.6.4 Human fetal tissue 11.7 Neurodevelopmental disorders 11.7.1 Lissencephaly 11.7.2 Polymicrogyria 11.7.3 Other folding disorders 11.8 Conclusions Acknowledgments References Part II: Generation of neuronal diversity 12 - Cell biology of neuronal progenitor cells 12.1 Introduction 12.2 Location of neuronal progenitors 12.2.1 Multipotent progenitor cells in the ventricular zone generate CNS neurons 12.2.1.1 Neuroepithelial cells 12.2.1.2 Radial glia are neuronal progenitor cells 12.2.2 Neuronal progenitor cells in the subventricular zone 12.2.3 Other non-VZ/SVZ neuronal progenitor cells 12.2.3.1 The dentate gyrus 12.2.3.2 The external granule layer in the cerebellum 12.2.3.3 The retina 12.2.4 The peripheral nervous system 12.2.5 Adult neurogenesis 12.3 Creating different types of neuronal progenitor cells 12.3.1 Neuronal progenitor diversification begins with a regional address 12.3.2 Neuronal progenitor cells are specified temporally 12.3.2.1 Temporal order of neuron generation in the cerebral cortex 12.3.3 Molecular heterogeneity in neuronal progenitor cells 12.4 Cell lineage analysis reveals the fate of individual neuronal progenitor cells 12.4.1 Leading the way: cell lineage analysis in the invertebrate nervous system 12.4.2 Cell lineage analysis in the mammalian nervous system 12.4.3 Lineage analysis, the movie 12.5 Structure and dynamism of neuronal progenitor cells 12.5.1 Interkinetic nuclear migration 12.5.2 Nuclear movement of non-APCs progenitor cells 12.5.3 The structure of radial glia cells 12.5.3.1 Apical-basal processes 12.5.3.2 Adherens junctions 12.5.3.3 Gap junctions 12.5.4 Morphological transitions of neural progenitor cells 12.6 Asymmetric cell division for neuronal diversity 12.6.1 Establishing cell polarity and mitotic spindle orientation 12.6.2 Spindle orientation and cell fate 12.6.3 Asymmetric segregation of the centrosome and the primary cilium membrane 12.6.4 Asymmetric inheritance of the midbody 12.6.5 Asymmetric localization of cell fate determinants 12.7 Progenitor microenvironment and regulating neuronal progenitor number 12.7.1 Fgfs regulate brain size 12.7.2 Shh and cerebellar granule neuron generation 12.7.3 β-Catenin and Wnt pathway 12.7.4 Apoptosis 12.8 Summary Acknowledgments References 13 - Notch and neural development 13.1 History of Notch signaling 13.2 Molecular mechanisms 13.2.1 Notch pathway components 13.2.2 Ligand activation of the Notch receptor 13.2.3 Notch and the balancing act 13.3 Signaling diversity and cis-inhibition 13.4 Timing and feedback are everything 13.5 Notch and the maintenance of neural stem cells during nervous system development 13.6 Notch and the generation of interneuron diversity 13.7 Postnatal neurogenesis and gliogenesis 13.8 Notch, glial cell fate, and maturation 13.9 Notch and neuronal migration 13.10 Notch and dendrite morphogenesis 13.11 Synaptic plasticity and Notch signaling 13.12 Embryonic stem cells and clinical perspectives 13.13 Conclusion References 14 - bHLH factors in neurogenesis and neuronal subtype specification 14.1 Overview of review content 14.2 Identification of neural bHLH transcription factors: History and evolutionary conservation between fly and mammal 14.2.1 The proneural bHLH factors 14.2.2 The E-proteins: heterodimeric partners for proneural bHLH factors 14.2.3 HES, HEY, and ID bHLH factors: inhibitors of neural differentiation 14.3 bHLH factor function in neuronal differentiation 14.3.1 Interplay between notch and proneural bHLH proteins 14.3.2 Refinements in the models for transition from progenitor to differentiated neuron 14.4 Functions of bHLH transcription factors in neuronal subtype specification 14.5 Molecular characteristics of bHLH transcription factors 14.5.1 Crystal structure of bHLH proteins: DNA recognition and dimer selectivity 14.5.2 Structure function analysis of proneural bHLH proteins 14.6 Protein-Protein interactions modulating cell type-specific functions of neural bHLH factors 14.7 Transcriptional targets of proneural bHLH factors 14.8 Transcriptional regulation of bHLH gene expression 14.9 Posttranslational control of neural bHLH transcription factor function 14.10 Reprogramming activities of proneural bHLH factors 14.11 Perspective References 15 - The specification and generation of neurons in the ventral spinal cord 15.1 Introduction and general organization 15.2 Induction of spinal cord tissue and initiation of regional pattern 15.2.1 The emergence and organization of cell subtypes in the ventral spinal cord 15.2.2 Shh signaling and ventral cell fate specification 15.2.3 Transcriptional control of progenitor gene expression 15.2.4 Additional signaling influences over progenitor gene expression patterns 15.3 Spinal cord neurogenesis 15.3.1 Control of cell cycle progression and exit in neuronal progenitors 15.3.2 Coordination of cell fate and neurogenesis 15.4 The generation of differentiated neuronal cell subtypes 15.4.1 Motor neuron axial subclass specification: rostral-caudal patterning of the spinal cord influences cell fate within a dorsa ... 15.4.2 Genetic programs in postmitotic cells 15.4.3 Motor neuron subclass diversification 15.4.4 Correlation between cell fate and locomotor circuits References 16 - Neurogenesis in the cerebellum 16.1 Introduction to the cerebellum 16.2 Overview of cerebellar development 16.3 Establishing the cerebellar territory 16.3.1 Establishing the cerebellar territory along the anterior-posterior axis: the isthmic organizer 16.3.2 Establishing the cerebellar territory along the dorsal-ventral axis 16.4 The cerebellar ventricular zone and its derivatives 16.4.1 Ventricular zone development and neurogenesis in ventricular zone 16.4.2 Molecular mechanisms that regulate the differentiation and migration of Purkinje cells and GABAergic neurons of CN 16.4.3 Molecular mechanisms that regulate development of PWM and GABAergic interneurons 16.5 The cerebellar rhombic lip and its derivatives 16.5.1 Rhombic lip induction and neurogenesis within the rhombic lip 16.5.2 Regulation of granule cell development 16.5.2.1 Regulation of tangential migration of granule neuron precursors from the rhombic lip 16.5.2.2 Regulation of proliferation and differentiation of GNPs in the EGL 16.5.2.3 Regulation of radial migration of granule cells from the EGL to the IGL 16.5.3 Regulation of differentiation and migration of glutamatergic neurons of CN and UBCs 16.6 Cerebellar stem cells and regeneration of the cerebellum 16.7 Conclusions and future perspectives References 17 - The generation of midbrain dopaminergic neurons 17.1 Introduction 17.1.1 Dopamine 17.1.2 Dopamine system in the brain 17.1.2.1 Midbrain dopamine neurons-anatomically defined groups 17.1.2.2 Midbrain dopamine neurons-groups defined by molecular profiles 17.2 The development of midbrain dopaminergic neurons-general overview 17.3 Generation of midbrain dopaminergic progenitors: patterning, specification, and proliferation 17.3.1 Patterning 17.3.2 Specification and proliferation 17.3.2.1 The role of signaling centers and secreted factors 17.3.2.2 The role of transcription factors 17.3.2.3 Diversity in midbrain dopaminergic progenitors 17.4 Generation of immature and mature midbrain dopaminergic neurons 17.4.1 Regulation of maturation 17.4.2 Migration of midbrain dopaminergic neurons 17.4.3 Axonal pathfinding of midbrain dopaminergic neurons 17.5 The terminal differentiation of the mature dopaminergic neuron 17.6 Maintenance of midbrain dopaminergic neurons 17.7 Perspectives References 18 - Neurogenesis in the basal ganglia 18.1 Introduction 18.2 Organization of embryonic subdivisions and their relationship to mature structures and cell types 18.2.1 Subdivisions of the mature and embryonic basal ganglia 18.2.2 Cellular organization of the developing basal ganglia 18.2.3 Fate analysis of the GEs and their subdivisions 18.3 Regional specification of subdivisions of the embryonic basal ganglia 18.3.1 Morphogen and growth/differentiation factor signaling in the developing basal ganglia 18.3.1.1 Shh signaling 18.3.1.2 Receptor tyrosine kinase signaling 18.3.1.3 Wnt signaling 18.3.1.4 Tgf-β signaling 18.3.1.5 Retinoid signaling 18.3.1.6 Notch signaling 18.3.2 Basal ganglia specification 18.3.3 LGE and CGE specification 18.3.4 MGE and POA specification 18.3.5 Septum specification 18.4 Generation of neuronal subtypes 18.4.1 LGE and CGE neuronal derivatives 18.4.1.1 Medium-sized striatal projection neurons 18.4.1.2 Olfactory bulb interneurons 18.4.1.3 Cortical and amygdalar interneurons 18.4.2 MGE and POA neuronal derivatives 18.4.2.1 Globus pallidus projection neurons 18.4.2.2 Striatal interneurons 18.4.2.3 Cortical interneurons 18.4.3 Cis-regulatory elements and epigenetics of basal ganglia development 18.4.4 Engineering basal ganglia neurons in vitro 18.5 Summary References 19 - Specification of cortical projection neurons: transcriptional mechanisms 19.1 Introduction 19.2 Neocortical progenitors 19.3 Neocortical progenitor cell-fate acquisition and plasticity 19.4 Molecular controls over neocortical projection neuron subtype specification, development, and diversity 19.4.1 Subtype specification of corticofugal projection neurons 19.4.2 Subtype specification of callosal projection neurons 19.4.3 Areal controls over diversity of neocortical projection neuron subtypes 19.5 Progressive restriction and refinement of cortical projection neuron subtypes 19.6 Generation of cortical projection neuron subtypes in vitro from human pluripotent stem cells 19.7 Subtype-specific circuit wiring by growth cones 19.8 Conclusions References 20 - The generation of cortical interneurons 20.1 Diversity of mature cortical interneurons 20.1.1 Parvalbumin interneurons 20.1.2 Somatostatin interneurons 20.1.3 Vasoactive intestinal peptide interneurons 20.1.4 Lamp5 interneurons 20.1.5 Gamma-synuclein and Serpinf1 interneurons 20.2 Developmental origin of cortical interneurons 20.2.1 The ventral origin of cortical neurons 20.2.2 Genetic determinants involved in the specification of the MGE and CGE 20.2.3 Place and time of origins of cortical interneurons 20.2.4 Fate mapping strategies to assess the origin of cortical interneurons 20.2.5 Genetic programs underlying the developmental emergence of interneurons 20.3 Migration of cortical interneurons 20.3.1 The influence of non-cell-autonomous signals on interneurons development 20.4 Postnatal cortical interneuron development 20.4.1 GABA is depolarizing during development 20.4.2 Early patterns of network activity 20.4.3 Role of activity in interneuron development 20.4.4 Interneuron development and neurological disorders Acknowledgments References 21 - Specification of retinal cell types 21.1 Introduction 21.2 Retinal progenitor cell competence 21.2.1 Establishment of retinal neuron and Müller glia birth order 21.2.2 Clonal analyses in the developing retina 21.2.3 Intrinsic versus extrinsic control of neurogenesis in the mammalian retina 21.3 Intrinsic regulation of retinal development 21.3.1 Early eye formation 21.3.2 Retinal neurogenesis 21.3.3 Intrinsic factor regulation of RGC development 21.3.4 Intrinsic factors regulating photoreceptor development 21.3.5 Epigenetic control of retinogenesis 21.3.6 MicroRNA-mediated regulation of retinal genes 21.4 Extrinsic regulation of retinogenesis 21.4.1 Bmp/Tgfβ superfamily signaling 21.4.2 Fgf signaling 21.4.3 Notch signaling 21.4.4 Retinoic acid signaling 21.4.5 Hh signaling 21.4.6 Wnt/β-catenin signaling 21.5 Regenerative capacity of the retina 21.6 Perspective Glossary References 22 - Neurogenesis in the postnatal V-SVZ and the origin of interneuron diversity 22.1 Newborn neurons are generated in the V-SVZ of the adult brain 22.2 Identification and origin of adult neural stem cells 22.3 OB interneurons are heterogeneous 22.4 Spatial specification of OB interneuron identity 22.5 Temporal regulation of OB interneuron production 22.6 Conclusion Acknowledgments References 23 - Neurogenesis in the damaged mammalian brain 23.1 Introduction 23.2 Persistent versus injury-induced neurogenesis in the adult brain 23.2.1 Neurogenesis in the intact brain 23.2.1.1 Active neurogenic regions 23.2.1.2 Common and distinct features of adult neurogenic niches 23.2.1.3 Cryptic or less active neurogenic regions 23.3 Neurogenesis in the injured brain 23.3.1 Stimulation of ongoing neurogenesis after damage 23.3.2 Ectopic production of new neurons and glia in damaged brains 23.3.2.1 Acute central nervous system injury 23.3.2.1.1 Neocortex 23.3.2.1.2 Striatum 23.3.2.1.3 Hippocampus 23.3.2.1.4 Substantia nigra 23.3.2.1.5 Spinal cord 23.3.2.1.6 Retina 23.3.2.1.7 Other regions of the central nervous system 23.3.2.2 Neurogenesis in chronic neurodegenerative conditions 23.3.2.2.1 Alzheimer's disease 23.3.2.2.2 Huntington disease 23.3.2.2.3 Other neurodegenerative disorders 23.4 Identity, integration, and extent of regeneration of new neurons 23.4.1 Neocortex and hippocampus 23.4.2 Striatum 23.4.3 Other regions of the central nervous system 23.5 Contribution of injury-induced neurogenesis to functional recovery 23.5.1 Attenuation of neurogenesis 23.5.2 Enhancement of neurogenesis 23.5.3 Just a correlation or the cause? 23.6 How widespread is injury-induced neurogenesis?: technical issues 23.7 Cellular origins of injury-induced neurogenesis 23.7.1 Contribution of NPCs in known neurogenic niches 23.7.2 Identity of cells that generate new neurons 23.7.3 Possible cellular sources outside neurogenic niches 23.8 Gliogenesis after injury 23.8.1 Oligodendrogenesis 23.8.2 Astrogenesis 23.9 Mechanisms underlying injury-induced neurogenesis 23.9.1 Cell-intrinsic limitation of NPCs 23.9.1.1 Limited number and expansion of NPCs 23.9.1.2 Limited plasticity of NPCs 23.9.1.3 Intrinsic fate determinants of NPCs 23.9.1.3.1 Maintenance and proliferation of NSCs 23.9.1.3.2 Differentiation of NSCs 23.9.1.3.3 Neuronal subtype specification 23.9.2 Environmental restrictions 23.9.2.1 Growth factors 23.9.2.2 Differentiation factors 23.9.2.3 Migratory cues 23.9.2.4 Survival and maturation signals 23.9.2.5 Inflammatory and immune signals 23.9.2.6 Neurotransmitter signals 23.9.2.6.1 Glutamate and GABA 23.9.2.6.2 Dopamine 23.9.2.6.3 Serotonin 23.9.2.6.4 Neuropeptides and other neurotransmitters 23.9.2.6.5 Specific neuronal populations 23.9.2.7 Hormones 23.9.2.8 Other signals 23.9.2.8.1 Nitric oxide 23.9.2.8.2 Lipid mediators 23.9.2.8.3 Cell grafts 23.10 Neuronal cell reprogramming 23.11 Link between neurodegeneration and neurogenesis 23.12 Neurovascular niche 23.13 Nonneurogenic roles of adult NPCs in brain repair 23.14 Future perspectives Acknowledgments References 24 - Neuronal identity specification in the nematode Caenorhabditis elegans 24.1 Introduction 24.2 Neuron classification 24.3 Neuronal cell lineages 24.4 Genes controlling lineage decisions 24.4.1 Neuronal versus nonneuronal lineage transformations 24.4.2 Neuron lineage alterations and losses 24.5 Terminal selectors control neuron class specification 24.6 Genes controlling neuron subclass diversification 24.6.1 Diversifying motor neuron classes 24.6.2 Neuronal identity diversification across the left/right axis 24.7 Other regulatory routines operating during neuronal differentiation 24.8 Linking neuronal class specification to lineage 24.9 Concluding remarks Acknowledgments References 25 - Development of the Drosophila melanogaster embryonic CNS: from neuroectoderm to unique neurons and glia 25.1 Introduction 25.2 Patterning of the neuroectoderm: breaking the homogeneity 25.2.1 Patterning the ventral neuroectoderm 25.2.2 Patterning the brain neuroectoderm 25.3 Homologous neuromeres: same but different 25.4 The chosen one: lateral inhibition 25.4.1 Delamination of VNC neuroblasts 25.4.2 Delamination of brain neuroblasts 25.5 Unequal legacy: asymmetric cell division 25.6 One thing at a time: the temporal cascade 25.7 Regulation of neuroblast and daughter cell proliferation 25.7.1 NB cell cycle exit and daughter cell proliferation switches: the role of cell cycle genes 25.7.2 NB cell cycle exit and daughter cell proliferation switches: the role of late temporal and Hox genes 25.7.3 NB exit and daughter cell proliferation switches: the role of the Notch pathway 25.7.4 NB exit and daughter cell proliferation switches: the role of early temporal and pan-neural genes 25.7.5 Brain-specific NB behavior: type II NBs 25.7.6 Brain-specific NB behavior: mushroom body and IPC NBs 25.8 The role of programmed cell death in the Drosophila embryonic VNC 25.9 Finishing the picture: specification of unique cell types 25.9.1 Specifying brain cells 25.9.2 Specifying VNC neuropeptide cells 25.9.3 Specifying motor neurons 25.9.4 Specifying midline neurons 25.9.5 Specifying glia cells 25.9.5.1 Specifying lateral glia cells 25.9.5.2 Specifying midline glia cells 25.10 Conclusions 25.11 Outstanding issues Acknowledgments References 26 - Neurogenesis in zebrafish 26.1 Neural plate induction and patterning 26.1.1 Formation of the neural tube 26.1.2 Neural plate induction 26.1.3 Neural plate patterning along the anteroposterior axis 26.2 Establishment of the primary neuronal scaffold 26.2.1 Organization of the primary neuronal scaffold 26.2.2 Formation of the primary neuronal scaffold 26.2.2.1 Identification of competent proneural domains within the neural plate 26.2.2.2 Neurogenesis control within the proneural clusters 26.2.2.2.1 Lateral inhibition in Drosophila 26.2.2.2.2 Lateral inhibition in vertebrates 26.2.2.2.3 Regulation of notch signaling 26.2.2.3 Determination of primary neuronal identities 26.2.2.3.1 Morphogens 26.2.2.3.2 Notch signaling 26.3 Secondary neurogenesis 26.3.1 Functional anatomy of secondary neurogenesis 26.3.1.1 Motor and sensory systems 26.3.1.2 Neuromodulatory, neurohormone, and neuropeptide systems 26.3.2 Molecular and cellular mechanisms of secondary neurogenesis 26.3.2.1 Secondary neurogenesis: balance between proliferation and differentiation 26.3.2.2 Neuroblast migration 26.3.2.2.1 Facial branchiomotor neurons migration 26.3.2.2.2 Migration of precursor cells in the cerebellum 26.3.2.3 Neuronal subtype specification 26.3.2.3.1 Specification of subtypes in the spinal cord 26.3.2.3.2 Neuromodulatory systems 26.3.2.3.2.1 DA neurons 26.3.2.3.2.2 NA neurons 26.3.2.3.2.3 5-HT and HA neurons 26.3.2.3.2.4 Diencephalic/hypothalamic neurohormones and neuropeptides 26.4 Adult neurogenesis and plasticity 26.4.1 Anatomy of adult neurogenesis 26.4.1.1 Neurogenesis domains 26.4.1.2 Influence of physiological parameters on neurogenic activity 26.4.2 Molecular and cellular mechanisms of adult neurogenesis 26.4.2.1 Localization, identity, and properties of adult progenitor cells 26.4.2.1.1 NSCs in the adult telencephalon: markers and lineages 26.4.2.1.1.1 Continuous lineages from embryo to adult contribute to generate an ``ordered'' pallial structure 26.4.2.1.1.2 Changes in neurogenesis with aging 26.4.2.1.2 NSCs at the adult MHB: markers and lineages 26.4.2.1.3 NSCs in the adult cerebellum: markers, lineage 26.4.2.2 Molecular pathways of adult neural progenitor maintenance and recruitment 26.4.2.2.1 Notch 26.4.2.2.2 microRNA-9 26.4.2.2.3 Fezf2 26.4.2.2.4 Fgf 26.4.2.2.5 Steroids 26.4.2.2.6 BDNF 26.4.2.2.7 Id (inhibitor of DNA binding) 26.4.2.3 Adult neurogenesis and plasticity upon brain or spinal injury 26.4.2.3.1 Neurogenesis and regeneration in the telencephalon 26.4.2.3.2 Neurogenesis and regeneration in the diencephalon (DA neurons) 26.4.2.3.3 Neurogenesis and regeneration in the optic tectum 26.4.2.3.4 Neurogenesis and regeneration in the cerebellum 26.4.2.3.5 Neurogenesis and regeneration in the spinal cord References 27 - Gene regulatory networks controlling neuronal development: enhancers, epigenetics, and functional RNA 27.1 Introduction-genomic control of cell identity in the brain 27.2 Overview of gene regulation and the control of neuronal diversity 27.3 Interactions between transcription factors, regulatory DNA, and epigenetics 27.4 Enhancers 27.4.1 Mapping and functional prediction of enhancers in the brain 27.4.2 Enhancer activity in brain development 27.4.3 Combinatorial enhancer binding of transcription factors activates or represses 27.4.4 Comparative genomics-evolutionary conservation and novelty of brain enhancers 27.4.5 Example: ARX expression is regulated by coordinated activity of distal enhancers 27.4.6 Role of enhancer variation in neurodevelopmental and psychiatric disorders 27.4.7 Current questions regarding enhancer function 27.5 Epigenetics 27.5.1 How chromatin state contributes to gene regulation 27.5.2 Functional genome annotation 27.5.2.1 DNA methylation 27.5.2.2 Histone modification 27.5.2.3 Chromatin accessibility 27.5.3 Lineage specification and chromatin in the brain 27.5.4 Interaction between transcription factors and chromatin 27.5.5 Role of chromatin remodelers in neurodevelopmental disorders 27.5.6 Current questions regarding epigenetics 27.6 Regulatory RNA in brain development 27.6.1 Functional RNA: miRNA, lncRNA, eRNA 27.6.2 miRNA: a brief overview 27.6.3 lncRNA-evidence for function 27.6.4 eRNA-transcriptional artifacts or functional molecules? 27.6.5 Current questions regarding functional RNA 27.7 Putting it all together-gene regulatory networks 27.7.1 Example: Nkx2-1 in the basal ganglia 27.8 Conclusion References 28 - Posttranscriptional and translational control of neurogenesis: roles for RNA-binding proteins 28.1 Introduction 28.1.1 Neurogenesis 28.1.2 Posttranscriptional regulation 28.2 Alternative splicing 28.2.1 Global and dynamic splicing patterns 28.2.2 Trans-regulators of splicing 28.2.3 Summary I 28.3 From nucleus to cytoplasm 28.3.1 The exon junction complex 28.3.2 Nonsense-mediated decay 28.3.3 Summary II 28.4 Translational control 28.4.1 Core translational machinery 28.4.2 The elavl family members 28.4.3 RNA localization, transport, and translation 28.4.4 Summary III 28.5 The epitranscriptome 28.5.1 Readers and writers 28.5.2 Summary IV 28.6 Perspectives References 29 - Human neurogenesis: single-cell sequencing and in vitro modeling 29.1 Introduction 29.2 Single-cell sequencing modalities 29.2.1 Whole-cell RNA-sequencing to identify molecular signatures of known and novel cell types 29.2.2 Nuclei sequencing to discover novel human cell types 29.2.3 Multimodal integration of transcriptomic, morphologic, and physiologic features highlights functional significance of cellu ... 29.2.4 ATAC-seq, methylation, and other measures of chromatin state 29.2.5 Other modalities 29.2.6 In situ sequencing and other imaging strategies 29.3 Overview of analytical approaches and strategies 29.3.1 Clustering and basic analysis strategies 29.3.2 Approaches to lineage reconstruction 29.3.2.1 In vitro modeling of human neurogenesis 29.4 Cell culture strategies 29.4.1 Stem cells and reprogramming 29.4.2 Adherent culture systems 29.4.3 Brain organoid models 29.5 Modeling development in organoids 29.5.1 Regionalization 29.5.2 Timing of maturation compared to normal development 29.5.3 Developmental trajectories and neuronal differentiation 29.5.4 Cellular diversity 29.5.5 Architectonics 29.5.6 Cellular dynamics and migration 29.5.7 Reproducibility 29.6 Regional interactions 29.6.1 Whole brain organoids 29.6.2 Organoid fusing 29.7 Functional activity 29.7.1 Modeling circuits 29.7.2 Single-cell analysis of in vitro cerebral organoid models 29.7.3 Organoid models to study human evolution 29.8 Disease phenotypes 29.9 Engineering organoids 29.10 Conclusion References Part III: Development of glia, blood vessels, choroid plexus, immune cells in the nervous system 30 - A golden age for glial biology 30.1 Overview 30.2 Brief summary of section chapters 30.2.1 Chapters 31-33: neural stem cells and astrocytes 30.2.2 Chapters 34-40: myelinating cells 30.2.3 Chapters 41-43: microglia, ependyma, perivascular cells, and meninges 30.3 Conclusion 31 - Neural stem cells among glia 31.1 Introduction 31.2 NSCs among glia in the developing brain 31.2.1 Neuroepithelial cells 31.2.2 Radial glia 31.2.3 Intermediate (basal) progenitor cells 31.2.4 Outer radial glia 31.3 Molecular regulation of progenitor proliferation, cell fate, and polarity 31.3.1 Mapping progenitor cell fates 31.3.2 Role of apical-basal polarity in progenitors 31.3.2.1 Regulation at the apical surface 31.3.2.2 Role of the basal process 31.3.3 New models of molecular regulation in progenitors 31.4 NSCs among glia in the postnatal brain 31.4.1 RG persist after birth and function as NSCs in some vertebrates 31.4.2 NSCs (Type B1 cells) in the adult mammalian V-SVZ 31.4.3 NSCs (radial astrocytes) in the adult hippocampus 31.4.4 Regulation of adult NSCs 31.5 Link between embryonic and adult glial cells that function as NSCs 31.6 Origin of oligodendrocytes from RG and adult V-SVZ astrocytes 31.7 Evolutionary perspective 31.8 Perspective for brain repair 31.9 Conclusion Acknowledgments References 32 - Mechanisms of astrocyte development 32.1 Introduction 32.1.1 Overview of astrocyte function in the central nervous system 32.1.2 Why is the study of astrocytes uniquely challenging? 32.1.2.1 Interspecies differences in astrocyte developmental lineages 32.1.2.2 The absence of a clear developmental endpoint 32.1.2.3 The lack of molecular tools 32.1.3 Overview of the chapter 32.2 The origins of astrocytes 32.2.1 Use of in vitro culture methods to generate astrocytes 32.2.2 Use of induced pluripotent stem cell technology to generate astrocytes in vitro 32.2.3 Molecular mechanisms of astrocyte specification and initiation 32.2.3.1 1996-99: Role of signaling molecules 32.2.3.2 1996-99: Suppression of astrocyte fate and epigenetic states 32.2.3.3 2000-04: Discovery of the role of Notch signaling to promote astrocytes 32.2.3.4 2005: Feedback mechanisms controlling astrocyte fate 32.2.3.5 2006: Discovery of NFIA, which controls the neuron-glia switch 32.2.3.5.1 2009: NFIA also promotes differentiation of astrocytes, after the neuron-glia switch 32.2.3.5.2 2012: Relationship of NFIA with transcription factor Sox9 32.2.3.5.3 2014: Relationship of NFIA with transcription factors Sox10 and Olig2 to control oligodendrocyte fate 32.2.3.6 2006-present: discoveries of other pathways, transcription factors, and mechanisms of astrocyte fate determination 32.2.3.6.1 Receptors and signaling pathways: ErbB4 and MEK/ERK pathway 32.2.3.6.2 Transcription factors: Coup-TFI, Lhx2, and Zbtb20 32.2.3.6.3 Epigenetic controls: Hdac3 in the astrocyte-oligodendrocyte fate decision and the role of chromatin loops 32.2.4 Patterning of the neural tube and astrocytes 32.2.4.1 Are astrocytes patterned? 32.2.4.2 Patterning as a mechanism to generate astrocyte diversity 32.3 Mechanisms of astrocyte differentiation 32.3.1 The search for stage-specific and subtype-specific pan-astrocytic markers 32.3.1.1 Classical markers of astrocytes 32.3.1.2 Newly identified transcription factors as astrocyte markers 32.3.1.3 Functional proteins as mature astrocyte markers 32.3.1.4 Emerging astrocyte markers based on transcriptional profiling 32.3.2 Defining the intermediate phases of astrocyte lineage trajectory 32.3.2.1 Directionality of astrocyte migration from the subventricular zone 32.3.2.2 Location of astrocyte precursor proliferation 32.3.2.3 Molecular regulation of the intermediate phases of astrocyte development 32.4 Morphologic and functional maturation of astrocytes 32.4.1 Morphologic maturation of astrocytes 32.4.2 Functional maturation of astrocytes 32.4.2.1 Lessons from the fly about neuron-glia interactions 32.4.2.2 Neuronal activity sculpts astrocyte maturation 32.5 The development of astrocyte diversity 32.5.1 Morphological diversity across the adult central nervous system 32.5.2 Regional and functional diversity across the adult central nervous system 32.5.3 Does regional diversity control function of spatially separated astrocytes? 32.5.4 Local diversity at specific regions and their contribution to astrocyte function 32.5.5 Other aspects of astrocyte diversity 32.6 Conclusions and future directions References 33 - Astrocyte-neuron interactions in synaptic development 33.1 Developmental stages of synapse formation and maturation 33.2 Role of astrocytes in synaptic development 33.2.1 Contact-mediated astrocyte synaptogenic signals 33.2.1.1 Integrin-protein kinase C 33.2.1.2 Neurexin 33.2.1.3 Gamma protocadherins 33.2.1.4 Neuroligins 33.2.1.5 Eph/ephrin 33.2.2 Astrocyte-secreted synapse-regulating signals 33.2.2.1 Synapse number 33.2.2.1.1 Thrombospondin 33.2.2.1.2 Sparcl1 33.2.2.1.3 Transforming growth factor beta 33.2.2.2 Presynaptic function 33.2.2.2.1 Cholesterol and lipid metabolism 33.2.2.3 Postsynaptic function 33.2.2.3.1 Glypicans 33.2.2.4 Tumor necrosis factor alpha 33.2.2.4.1 Chordin-like 1 33.2.2.4.2 Chondroitin sulfate proteoglycans 33.2.2.5 Negative synaptic regulators 33.2.2.5.1 SPARC 33.2.2.6 Additional astrocyte-derived signals 33.2.2.7 Inhibitory synapses 33.2.3 Astrocyte elimination of synapses 33.3 Region, temporal, and neuronal regulation of astrocyte synaptogenic cues 33.3.1 Regional heterogeneity of astrocyte synaptogenic gene expression 33.3.2 Temporal changes in astrocyte synaptogenic gene expression 33.3.3 Neuronal regulation of synaptogenic cue expression in astrocytes 33.4 Conclusion References 34 - Specification of oligodendrocytes 34.1 Introduction 34.2 Determinants of oligodendroglial fate 34.3 Determinants of oligodendroglial identity 34.4 Determinants of progenitor state maintenance 34.5 Determinants of progression from the progenitor state 34.6 Determinants of terminal differentiation and the fully differentiated state 34.7 Concluding remarks perspectives References 35 - Signaling pathways that regulate glial development and early migration-oligodendrocytes 35.1 Introduction 35.2 Signaling pathways regulating the initial appearance of oligodendrocyte precursors 35.2.1 Timing and localization of appearance of OPCs 35.2.2 Molecular control of early OPC appearance 35.2.2.1 Sonic hedgehog 35.2.2.2 Bone morphogenetic proteins 35.2.2.3 Wnts 35.2.2.4 Neuregulin 35.2.2.5 FGF 35.3 Regulation of OPC migration 35.3.1 Mechanisms of OPC dispersal: engagement of the vasculature 35.3.2 Molecular guidance of OPC dispersal 35.3.2.1 Netrins 35.3.2.2 Semaphorins 35.3.3 Molecular control of OPC motility 35.3.3.1 Growth factors 35.3.3.2 Neurotransmitters and channels 35.3.3.3 Chemokines 35.3.4 Signals regulating the final localization of oligodendrocytes 35.3.4.1 CXCL1 35.3.4.2 Tenascin C 35.4 Regulation of OPC differentiation 35.4.1 Cell extrinsic regulation of oligodendrocyte differentiation 35.4.1.1 LINGO-1 35.4.1.2 PSA-NCAM 35.4.1.3 Notch/delta 35.4.2 Cell-intrinsic regulators of oligodendrocyte differentiation 35.4.3 Transcriptional regulators of OPC terminal differentiation 35.4.3.1 Negative transcriptional regulators of OPC terminal differentiation 35.4.3.2 Positive regulators of OPC terminal differentiation 35.4.3.3 Intrinsic transcriptional regulation of oligodendrocyte maturation and myelination 35.5 Epigenetic regulation of oligodendrocyte development 35.5.1 ATP-dependent chromatin remodelers 35.5.2 Histone-modifying enzymes 35.5.3 miRNAs in oligodendrocyte development 35.5.4 lncRNAs in oligodendrocyte development 35.6 Conclusions References 36 - Neuron-glial interactions and neurotransmitter signaling to cells of the oligodendrocyte lineage 36.1 Introduction 36.2 Distinguishing characteristics of OPCs, premyelinating oligodendrocytes, and mature oligodendrocytes 36.2.1 OPC distribution, morphology, and proliferation 36.2.2 Distribution and morphology of premyelinating oligodendrocytes and oligodendrocytes 36.2.3 Physiological properties of oligodendrocyte lineage cells 36.2.4 Transcriptional expression profiles across the oligodendrocyte lineage 36.3 Neurotransmitter signaling within the oligodendrocyte lineage: glutamate 36.3.1 AMPA receptor signaling within oligodendrocyte lineage cells 36.3.2 NMDA receptor signaling within oligodendrocyte lineage cells 36.3.3 Metabotropic glutamate receptors within oligodendrocyte lineage cells 36.3.4 Glutamate receptor expression during progenitor differentiation 36.4 Neurotransmitter signaling within the oligodendrocyte lineage: GABA, acetylcholine, and ATP 36.5 Synaptic signaling between neurons and OPCs 36.5.1 A surprising discovery: evidence for the existence of neuron-OPC synapses 36.5.2 Do neuron-OPC synapses regulate oligodendrogenesis? 36.5.3 Activity-dependent myelination 36.5.4 Additional features of neuron-OPC synapses: signaling functions beyond oligodendrogenesis? 36.6 Oligodendrocyte lineage cells in the context of disease and injury 36.6.1 OPC reactivity and vulnerability of oligodendrocyte lineage cells to pathology 36.6.2 Perinatal hypoxia and ischemia 36.6.3 OPCs and hypomyelination/demyelination 36.6.4 Tumorigenesis and gliomas 36.7 Conclusions/future directions References 37 - Nonmammalian model systems of zebrafish 37.1 History and attributes of the zebrafish model system 37.1.1 Establishment of a new animal model 37.1.2 The zebrafish toolbox 37.2 Zebrafish glial classification 37.3 Zebrafish oligodendrocyte development 37.3.1 Oligodendrocyte specification 37.3.2 Oligodendrocyte lineage cell migration, proliferation, and differentiation 37.4 Zebrafish peripheral glia 37.4.1 Schwann cells and the zebrafish lateral line system 37.4.2 Genetic control of peripheral glial development 37.4.3 Motor root perineurial cells originate as CNS glia 37.4.4 Glial cell interactions at the CNS-PNS interface 37.5 Zebrafish radial glia 37.6 Zebrafish microglia 37.7 Conclusion References 38 - Specification of macroglia by transcription factors: Schwann cells 38.1 Introduction 38.2 Specification of Schwann cells from neural crest 38.2.1 Alternate developmental fates of Schwann cell precursors 38.3 Immature Schwann cells: radial sorting and transition to myelination 38.4 Signaling pathways regulating the myelin program 38.4.1 Neuregulin 38.4.2 G protein-coupled receptor 126 signaling 38.4.3 Mitogen-activated protein kinase signaling. ERK1/2 38.4.4 PI-3 kinase and mTOR signaling 38.4.5 Calcium and prostaglandin signaling converging on nuclear factor of activated T-cell (NFAT) transcription factors in Schwan ... 38.4.6 Negative regulators of myelination 38.5 Integration of signaling pathways at myelin genes 38.6 Epigenetic regulation of Schwann cell differentiation 38.7 Reprogramming Schwann cell behavior in pathology 38.8 Conclusion List of acronyms and abbreviations References 39 - Signaling pathways that regulate glial development and early migration-Schwann cells 39.1 Introduction 39.1 Overview of Schwann cell development 39.1.1 Schwann cell precursors, the glial cells of early embryonic nerves 39.1.2 Immature Schwann cells 39.1.3 Axonal signals 39.1.4 Boundary cap cells 39.2 Developmental potential and Schwann cell plasticity 39.3 Major differences among migrating neural crest cells, SCP, and iSch 39.4 Gliogenesis from crest cells: the appearance of SCP 39.4.1 HDAC1/2 39.4.2 Sox10 39.4.3 NRG1 39.4.4 Notch 39.5 NRG1 and Notch signaling IN SCP 39.5.1 Survival 39.5.2 Migration 39.5.3 NRG1 on developing axons 39.5.4 NRG1 and Notch interact to promote SCP survival and iSch generation 39.6 Schwann cell generation and the architectural reorganization of peripheral nerves 39.7 SCP and early Schwann cells control neuronal survival, nerve fasciculation, and synapse formation 39.7.1 Neuronal survival 39.7.2 Fasciculation and synapse formation 39.8 Schwann cells in late embryonic and perinatal nerves 39.9 Signals that drive Schwann cell proliferation in vivo 39.9.1 Notch 39.9.2 TGFβ 39.9.3 YAP/TAZ pathway 39.9.4 NRG1 39.9.5 Laminin and GPR126 39.10 Signals that promote Schwann cell death and survival in vivo 39.11 Radial sorting 39.11.1 Laminin and integrins 39.11.2 NRG1 39.11.3 Lgi4 39.11.4 GPR126 39.11.5 Sox10 39.11.6 HDAC1/2 39.11.7 Zeb2 39.11.8 The HIPPO pathway 39.11.9 Jab 1 39.11.10 Wnt/beta-catenin signaling 39.12 The onset of myelination 39.12.1 Positive regulators 39.12.2 The onset of myelination: negative regulators 39.13 Conclusions Acknowledgments References 40 - Structure and function of myelinated axons 40.1 Introduction 40.2 Evolution of the myelinated axon 40.2.1 Ion channel clustering in the axon 40.2.2 Myelin-enabling ``wrap-id'' advances in cognition 40.3 Myelinating glial cells and axoglial interactions 40.4 Nodes of Ranvier: structure, composition, and function 40.4.1 Nodes of Ranvier 40.4.2 Paranodal junctions 40.4.3 Juxtaparanodes 40.5 Assembly of nodes of Ranvier 40.5.1 Clustering of Na+ channels at nodes of Ranvier in the PNS 40.5.2 Clustering of Na+ channels at nodes of Ranvier in the CNS 40.6 Long-term maintenance of nodes in the PNS and CNS 40.7 Function of nodes in AP propagation and initiation 40.7.1 Developmental maturation of Na+ channel complexes at nodes of Ranvier 40.7.2 Nodal spacing contributes to neuronal computations 40.7.3 Proximal nodes of Ranvier in determining neuronal firing patterns 40.8 Nodes of Ranvier in nervous system disease and injury 40.8.1 Autoimmune disorders 40.8.2 Developmental neuropsychiatric disorders 40.9 Conclusions and outlook References 41 - Microglia 41.1 Introduction 41.2 Origin and maintenance of microglia 41.2.1 Developmental origins of microglia 41.2.2 Microglia in different species 41.2.3 Microglia turnover in the adult brain 41.3 Microglia as dynamic cells in the CNS 41.3.1 Challenging the term ``resting'' microglia in the healthy CNS 41.3.2 Microglial responses to localized trauma in vivo 41.4 Microglial activation 41.5 Microglial interactions with other cell types 41.6 Microglia and disease 41.6.1 Microglia in multiple sclerosis 41.6.2 Microglia in stroke 41.6.3 Microglia in Alzheimer's disease 41.6.4 Microglia in neuropathic pain 41.6.5 Single-cell approaches to understand microglia heterogeneity 41.7 Concluding remarks List of abbreviations References 42 - Ependyma 42.1 Introduction 42.2 Structure of cells in contact with the ventricles 42.2.1 Structure of multiciliated ependymal cells 42.2.1.1 Structure of tanycytes 42.2.1.2 Structure of other cells in contact with ventricles 42.2.2 Origin and developmental mechanisms 42.2.2.1 Ependymal cell specification 42.2.2.2 Ependymal cell differentiation 42.2.2.3 Ependymal cell maturation 42.2.3 Functions in the brain 42.2.3.1 Ependymal epithelium: interface between brain and CSF 42.2.3.1.1 The ependymal junctions 42.2.3.1.2 A filter for brain-CSF exchange 42.2.3.1.3 A regulator of osmotic pressure 42.2.3.1.4 A barrier against harmful substances 42.2.3.1.5 A regulator of peptide concentrations 42.2.3.2 Trophic and metabolic support by ependymal cells 42.2.3.3 Can ependymal cells function as neural stem cells? 42.2.4 Associated pathologies 42.2.4.1 Ependymoma 42.2.4.2 Hydrocephalus 42.3 Summary References 43 - Meninges and vasculature 43.1 Meninges in development 43.1.1 Meninges assembly to adult structure: histology and molecular signaling 43.1.1.1 Emergence and maturation of the meningeal fibroblast layers 43.1.1.2 Developmental timeline and function of nonfibroblast cells of the meninges 43.1.2 Meninges-brain interface: signals from the meninges regulate development of the CNS 43.1.2.1 Meningeal Cxcl12 in fore- and hindbrain development 43.1.2.2 Meningeal retinoic acid in forebrain and hindbrain development 43.1.2.3 Meningeal bone morphogenic proteins in forebrain development 43.1.2.4 Meningeal deposition and maintenance of the pial BM 43.1.3 Perspectives on the meninges as an interface between the immune system and the brain 43.2 Development of the CNS vasculature 43.2.1 Timing and molecular mechanisms of CNS angiogenesis 43.2.1.1 Developmental timing of CNS vascularization 43.2.1.2 VEGF ligands regulate CNS vascular growth and patterning 43.2.1.3 Endothelial Wnt-β-catenin signaling is CNS vascular development 43.2.1.4 Integrin αvβ8 in CNS vascular development 43.2.1.5 Retinoic acid in cerebrovascular development 43.2.2 Establishment of the BBB 43.2.2.1 Developmental timing of BBB emergence 43.2.2.2 Molecular control of BBB development 43.2.2.3 Mural cells in regulation of vascular development and BBB maturation 43.2.3 Vascular contribution to neurodevelopmental events 43.2.3.1 Vascular regulation of neuro- and oligodendrogenesis 43.2.3.2 The embryonic vasculature as a migratory scaffold in the forebrain 43.2.3.3 The brain vasculature shapes axonal architecture 43.2.4 hiPSC-based BBB culture models: lessons from CNS vascular development 43.2.5 Summary and conclusions References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover