دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: موجک و پردازش سیگنال ویرایش: نویسندگان: Mumford D., Desolneux A. سری: Applying Mathematics ISBN (شابک) : 1568815794, 9781568815794 ناشر: AK Peters سال نشر: 2010 تعداد صفحات: 413 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
کلمات کلیدی مربوط به کتاب نظریه الگو: تحلیل تصادفی سیگنال های دنیای واقعی: ابزار دقیق، پردازش سیگنال، روش های آماری
در صورت تبدیل فایل کتاب Pattern theory: The stochastic analysis of real-world signals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه الگو: تحلیل تصادفی سیگنال های دنیای واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای است بر نظریه الگو، نظریهای که در پس وظیفه تحلیل انواع سیگنالهایی که دنیای واقعی به ما ارائه میدهد، است. با تولید مدلهای ریاضی الگوهای موجود در آن سیگنالها و الگوریتمها برای تجزیه و تحلیل دادههای مبتنی بر این مدلها سروکار دارد. این دیدگاه ریاضیات کاربردی را به عنوان شروع با مجموعه ای از مسائل از برخی حوزه های علم و سپس جستجوی ریاضیات مناسب برای شفاف سازی داده های تجربی و فرآیندهای اساسی تولید این داده ها نشان می دهد. تأکید بر یافتن ابزارهای ریاضی و محاسباتی مورد نیاز برای دستیابی به آن اهداف است که خواننده را به طور فعال در این فرآیند درگیر می کند. در میان مثالها و مشکلات دیگر، حوزههای زیر مورد بررسی قرار میگیرند: موسیقی بهعنوان تابعی واقعی از زمان پیوسته، تشخیص کاراکتر، تجزیه یک تصویر به مناطقی با رنگها و بافتهای متمایز، تشخیص چهره، و جلوههای پوستهگذاری موجود در تصاویر طبیعی ناشی از آنها. خود شباهت آماری
This book is an introduction to pattern theory, the theory behind the task of analyzing types of signals that the real world presents to us. It deals with generating mathematical models of the patterns in those signals and algorithms for analyzing the data based on these models. It exemplifies the view of applied mathematics as starting with a collection of problems from some area of science and then seeking the appropriate mathematics for clarifying the experimental data and the underlying processes of producing these data. An emphasis is placed on finding the mathematical and, where needed, computational tools needed to reach those goals, actively involving the reader in this process. Among other examples and problems, the following areas are treated: music as a realvalued function of continuous time, character recognition, the decomposition of an image into regions with distinct colors and textures, facial recognition, and scaling effects present in natural images caused by their statistical selfsimilarity.
Contents......Page 8
Preface......Page 10
Notation......Page 12
0.1 The Manifesto of Pattern Theory......Page 14
0.2 The Basic Types of Patterns......Page 18
0.3 Bayesian Probability Theory: Pattern Analysis and Pattern Synthesis......Page 22
1. English Text and Markov Chains......Page 30
1.1 Basics I: Entropy and Information......Page 34
1.2 Measuring the n-gram Approximation with Entropy......Page 39
1.3 Markov Chains and the n-gram Models......Page 42
1.4 Words......Page 52
1.5 Word Boundaries via Dynamic Programming and Maximum Likelihood......Page 58
1.6 Machine Translation via Bayes\' Theorem......Page 61
1.7 Exercises......Page 64
2. Music and Piecewise Gaussian Models......Page 74
2.1 Basics III: Gaussian Distributions......Page 75
2.2 Basics IV: Fourier Analysis......Page 81
2.3 Gaussian Models for Single Musical Notes......Page 85
2.4 Discontinuities in One-Dimensional Signals......Page 92
2.5 The Geometric Model for Notes via Poisson Processes......Page 99
2.6 Related Models......Page 104
2.7 Exercises......Page 113
3. Character Recognition and Syntactic Grouping......Page 124
3.1 Finding Salient Contours in Images......Page 126
3.2 Stochastic Models of Contours......Page 135
3.3 The Medial Axis for Planar Shapes......Page 147
3.4 Gestalt Laws and Grouping Principles......Page 155
3.5 Grammatical Formalisms......Page 160
3.6 Exercises......Page 176
4. Image Texture, Segmentation and Gibbs Models......Page 186
4.1 Basics IX: Gibbs Fields......Page 189
4.2 (u + v)-Models for Image Segmentation......Page 199
4.3 Sampling Gibbs Fields......Page 208
4.4 Deterministic Algorithms to Approximate the Mode of a Gibbs Field......Page 215
4.5 Texture Models......Page 227
4.6 Synthesizing Texture via Exponential Models......Page 234
4.7 Texture Segmentation......Page 241
4.8 Exercises......Page 247
5. Faces and Flexible Templates......Page 262
5.1 Modeling Lighting Variations......Page 266
5.2 Modeling Geometric Variations by Elasticity......Page 272
5.3 Basics XI: Manifolds, Lie Groups, and Lie Algebras......Page 275
5.4 Modeling Geometric Variations by Metricson Diff......Page 289
5.5 Comparing Elastic and Riemannian Energies......Page 298
5.6 Empirical Data on Deformations of Faces......Page 304
5.7 The Full Face Model......Page 307
5.8 Appendix: Geodesics in Diff and Landmark Space......Page 314
5.9 Exercises......Page 320
6. Natural Scenes and their Multiscale Analysis......Page 330
6.1 High Kurtosis in the Image Domain......Page 331
6.2 Scale Invariance in the Discrete and Continuous Setting......Page 335
6.3 The Continuous and Discrete Gaussian Pyramids......Page 341
6.4 Wavelets and the \"Local\" Structure of Images......Page 348
6.5 Distributions Are Needed......Page 361
6.6 Basics XIII: Gaussian Measures on Function Spaces......Page 366
6.7 The Scale-, Rotation- and Translation-Invariant Gaussian Distribution......Page 373
6.8 Model II: Images Made Up of Independent Objects......Page 379
6.9 Further Models......Page 387
6.10 Appendix: A Stability Property of the Discrete Gaussian Pyramid......Page 390
6.11 Exercises......Page 392
Bibliography......Page 400