دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, Roberto Vezzani سری: ISBN (شابک) : 3030687635, 9783030687632 ناشر: Springer Nature سال نشر: تعداد صفحات: 741 [757] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 117 Mb
در صورت تبدیل فایل کتاب Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10-15, 2021, Proceedings, Part I به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگو شناسی. کارگاه ها و چالش های بین المللی ICPR: رویداد مجازی، 10-15 ژانویه 2021، مجموعه مقالات، قسمت اول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مجموعه 8 جلدی داور بیست و پنجمین کنفرانس بینالمللی کارگاههای تشخیص الگو، ICPR 2020 است که بهطور مجازی در میلان ایتالیا برگزار شد و به دلیل همهگیری کووید-19 به تاریخ 10 تا 11 ژانویه 2021 موکول شد. 416 مقاله کامل ارائه شده در این 8 جلد به دقت بررسی و از بین حدود 700 مقاله ارسالی انتخاب شدند. این 46 کارگاه طیف گسترده ای از حوزه ها از جمله یادگیری ماشینی، تجزیه و تحلیل الگو، مراقبت های بهداشتی، رفتار انسانی، محیط زیست، نظارت، پزشکی قانونی و بیومتریک، روباتیک و egovision، میراث فرهنگی و تجزیه و تحلیل اسناد، بازیابی، و زنان را در ICPR2020 پوشش می دهند.
This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.
Foreword by General Chairs Preface Challenges ICPR Organization Contents – Part I 3DHU 2020 - 3D Human Understanding Workshop on 3D Human Understanding (3DHU) Organization 3DHU Workshop Chairs Technical Program Committee Additional Reviewer Sponsors Subject Identification Across Large Expression Variations Using 3D Facial Landmarks 1 Introduction 2 Temporal Deformable Shape Model 3 Experimental Design and Results 3.1 3D Face Databases 3.2 Experimental Design 3.3 Subject Identification Results 3.4 Subject Identification with Occluded Faces 3.5 Comparisons to State of the Art 4 Conclusion References 3D Human Pose Estimation Based on Multi-Input Multi-Output Convolutional Neural Network and Event Cameras: A Proof of Concept on the DHP19 Dataset 1 Introduction 2 Related Work 2.1 HPE Datasets 2.2 CNN Architectures 3 Materials and Methods 3.1 Dataset 3.2 Preprocessing and Frame Generation 3.3 Baseline: Single-Input Single-Output (SISO) Architecture 3.4 Proposed Approach: Multiple-Input Multiple-Output (MIMO) Architecture 3.5 3D Human Pose Estimation 3.6 Experimental Procedure 4 Results 4.1 Validation Results 4.2 2D Pose Estimation 4.3 3D Pose Estimation 5 Conclusions References Image-Based Out-of-Distribution-Detector Principles on Graph-Based Input Data in Human Action Recognition 1 Introduction 2 Related Work 3 Out-of-Distribution Detectors 3.1 Baseline 3.2 Out-of-DIstribution Detector for Neural Networks 3.3 Learning Confidence for OoD Detection 3.4 Metric Learning-Based Approach 4 Evaluation 4.1 Pipeline 4.2 Semi-synthetic Dataset 4.3 Metrics 4.4 Experimental Setup 4.5 Results 5 Conclusion References A Novel Joint Points and Silhouette-Based Method to Estimate 3D Human Pose and Shape 1 Introduction 2 Related Work 3 Method 3.1 Parametric Human Body Model 3.2 Pose Fitting 3.3 Shape Fitting 3.4 Optimization 4 Experiments 4.1 Datasets 4.2 Evaluation of Pose Fitting and Shape Fitting 4.3 Comparison to Previous Approaches 5 Conclusion References Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks 1 Introduction 1.1 Motivation 1.2 Related Work 1.3 Main Contributions and Outline of This Article 2 Method 2.1 Data Acquisition and Preprocessing 2.2 Network Architecture 2.3 Evaluation Method 3 Experimental Results 3.1 Hyperparameter Optimization 3.2 Test Results 4 Conclusions and Future Work References Towards Generalization of 3D Human Pose Estimation in the Wild 1 Introduction 2 Related Datasets 3 Proposed 3DBodyTex.Pose Dataset 4 Experimental Evaluation 4.1 Baseline 3D Pose Estimation Approach 4.2 Data Augmentation with 3DBodyTex.Pose 5 Conclusion References Space-Time Triplet Loss Network for Dynamic 3D Face Verification 1 Introduction 2 Proposed Static 3D Face Representation 3 Dynamic 3D Face Embedding 4 Experimental Results 4.1 Dataset and Experimental Setup 4.2 Face Verification Results 5 Conclusions and Future Works References AIDP - Artificial Intelligence for Digital Pathology Preface Organization General Chairs Program Committee Chair Program Committee Noise Robust Training of Segmentation Model Using Knowledge Distillation 1 Introduction 2 Related Work 2.1 Noise Robust Training 2.2 Knowledge Distillation 3 Method 4 Experiments 4.1 Datasets 4.2 Implementation Details 4.3 Evaluation 5 Conclusion References Semi-supervised Learning with a Teacher-Student Paradigm for Histopathology Classification: A Resource to Face Data Heterogeneity and Lack of Local Annotations 1 Introduction 2 Methods 2.1 Datasets 2.2 Teacher/Student Paradigm 2.3 Implementation 3 Results 4 Discussion 5 Conclusion References Self-attentive Adversarial Stain Normalization 1 Introduction 2 Related Work 3 Approach 4 Dataset and Implementation 4.1 Dataset 4.2 Network Architecture 4.3 Training Details 5 Results and Evaluation A Conclusions B Additional Results References Certainty Pooling for Multiple Instance Learning 1 Introduction 2 Related Work 3 Proposed Method 4 Experiments 4.1 Low Evidence Ratio MNIST-Bags 4.2 Camelyon16 Lymph Node Metastasis Detection Challenge 5 Conclusions References Classification of Noisy Free-Text Prostate Cancer Pathology Reports Using Natural Language Processing 1 Introduction 2 Related Work 3 Methods 3.1 Corpus 3.2 Corpus Preprocessing 3.3 Data Augmentation 3.4 Document Representation 3.5 Document Classification 3.6 Experimental Setup 4 Results 5 Discussion and Analysis 6 Conclusions and Future Work References AI Slipping on Tiles: Data Leakage in Digital Pathology 1 Introduction 2 Data Description 3 Methods 4 Results 5 Discussion 6 Conclusions References AIHA 2020 - International Workshop on Artificial Intelligence for Healthcare Applications Preface Organization AIHA Chairs Program Committee Additional Reviewers Predictive Medicine Using Interpretable Recurrent Neural Networks 1 Introduction 2 Related Work 3 Background 3.1 Recurrent Neural Networks (RNN) 3.2 Long Short-Term Memory (LSTM) 3.3 LSTM with Varying Timestamps 3.4 SHAP Values 4 Methodology 4.1 Data 4.2 Data Utils Package 4.3 Interpretability 4.4 Dashboard 4.5 Reproducibility 5 Results 5.1 Model Performance 5.2 Model Interpretation 6 Conclusions References Automated Detection of Adverse Drug Events from Older Patients' Electronic Medical Records Using Text Mining 1 Introduction 2 Methods 2.1 De-Identification 2.2 Manual Annotation 2.3 Automatic Annotation 2.4 OGER and BioBERT 2.5 BioBERT 2.6 Harmonisation and Merging 2.7 Drug Administration 3 Results 3.1 De-Identification 3.2 Lexico-Semantic Resources 3.3 Automatic Annotation 4 Discussion References Length of Stay Prediction for Northern Italy COVID-19 Patients Based on Lab Tests and X-Ray Data 1 Introduction 2 Related Work 3 Available Data Sources 3.1 Data Quality Issues 4 Datasets for Training and Testing 4.1 Pre-processing and Feature Extraction 4.2 Training and Test Sets Generation 5 Machine Learning Algorithms 5.1 Regression Algorithms 5.2 Hyperparameter Search 6 Experimental Evaluation and Discussion 6.1 Results 7 Conclusions and Future Work References Advanced Non-linear Generative Model with a Deep Classifier for Immunotherapy Outcome Prediction: A Bladder Cancer Case Study 1 Introduction 2 Related Works 3 The Proposed Deep Network Framework 3.1 The Bounding Box Segmentation Block 3.2 The 2D-CNN Features Generative Model 3.3 The 2D-DNN Classifier with Decision System 4 Experimental Results 5 Conclusion and Discussion References Multi-model Ensemble to Classify Acute Lymphoblastic Leukemia in Blood Smear Images 1 Introduction 2 Prior Art 3 Materials and Methods 3.1 Dataset 3.2 Methodology 4 Results and Discussion 5 Conclusion References MIINet: An Image Quality Improvement Framework for Supporting Medical Diagnosis 1 Introduction 2 Proposed Method – MIINet 2.1 The Image Dehazing Module – IDM 2.2 The Image Super-Resolution Module - ISR 3 Experimental Results 3.1 Throat Image Dataset 3.2 Training the IDM 3.3 Training the ISR Module 3.4 The Mean Doctor Opinion Score 3.5 Results 4 Discussion 5 Conclusion References Medical Image Tampering Detection: A New Dataset and Baseline 1 Introduction 2 Tampered Medical Image Dataset Generation 3 Framework for Medical Tampering Detection 3.1 Architectures 3.2 Model Parameterization 4 Experiments and Results 4.1 Experimental Setup 4.2 Ablation Study of Backbone Networks 4.3 Results of Our Framework 4.4 Generalizability of the ConnectionNet 5 Conclusion References Deep Learning for Human Embryo Classification at the Cleavage Stage (Day 3) 1 Introduction 2 Method 2.1 Images 2.2 State-of-the-Art CNN Model: STORK 2.3 Our CNN Models 2.4 Implantation Rate 3 Results 3.1 Regression Model of Technician Scores for Standalone Cases 3.2 STORK Performance on Middle Slice and Multi-slice Images 3.3 CNN Performance on Middle Slice and Multi-slice Images in Standalone Fashion 3.4 CNN Performance on Individual Technician Scores 3.5 Batch Effect 3.6 Performance on Easy Decisions 3.7 Pregnancy Outcomes 4 Discussion and Conclusion References Double Encoder-Decoder Networks for Gastrointestinal Polyp Segmentation 1 Introduction 2 Methodology 2.1 Double Autoencoders 2.2 Pretrained Encoders 2.3 Decoders 2.4 Training Details 3 Experimental Results 3.1 Data and Evaluation Metrics 3.2 Autoencoders vs. Double Autoencoders 3.3 Comparison with Recent Techniques 3.4 Qualitative Analysis 4 Discussion and Conclusion References A Superpixel-Wise Fully Convolutional Neural Network Approach for Diabetic Foot Ulcer Tissue Classification 1 Introduction 2 Related Work 3 Proposed Method 3.1 Image Acquisition and Data Annotation 3.2 Ulcer Segmentation and Superpixels Extraction 3.3 Superpixel-Based Tissue Classification 4 Results 4.1 Performance Metrics 4.2 Experimental Results 5 Conclusion References Fully vs. Weakly Supervised Caries Localization in Smartphone Images with CNNs 1 Introduction 1.1 Medical Motivation 1.2 Technical Motivation 1.3 Contributions 2 Related Work 3 Methods 3.1 Fully Supervised Object Detection 3.2 Weakly Supervised Localization 3.3 Implementation 4 Experiments 4.1 Data 4.2 Evaluation 5 Discussion 6 Conclusion References Organ Segmentation with Recursive Data Augmentation for Deep Models 1 Introduction 2 Dataset 3 Proposed Methodology 4 Experimental Setup 5 Results and Discussion 6 Conclusion References Pollen Grain Microscopic Image Classification Using an Ensemble of Fine-Tuned Deep Convolutional Neural Networks 1 Introduction 2 Materials and Methods 2.1 Dataset 2.2 Pre-processing 2.3 Pre-trained CNNs 2.4 Fine-Tuning 2.5 Fusion 2.6 Evaluation 2.7 Implementation 3 Results 4 Discussion 5 Conclusions References Active Surface for Fully 3D Automatic Segmentation 1 Introduction 2 Materials and Methods 2.1 Patient Dataset and PET Protocol Acquisition 2.2 Overview of the Proposed System 2.3 Performance Evaluation 3 Results 4 Discussions References Penalizing Small Errors Using an Adaptive Logarithmic Loss 1 Introduction 2 Adaptive Logarithmic Loss 3 Evaluation 4 Results 5 Conclusion References Exploiting Saliency in Attention Based Convolutional Neural Network for Classification of Vertical Root Fractures 1 Introduction 2 Relate Work 2.1 VRFs Recognition 2.2 CNN Based Image Classification 2.3 Weakly Supervised Learning 3 Materials and Method 3.1 VRFs DataSets 3.2 Feature Pyramids Attention Convolutional Neural Network 4 Experiments References UIP-Net: A Decoder-Encoder CNN for the Detection and Quantification of Usual Interstitial Pneumoniae Pattern in Lung CT Scan Images 1 Introduction 2 State of the Art 2.1 Deep Learning and Convolutional Neural Networks 3 Data and Methods 3.1 Data 3.2 Methods 4 Experimental Setup and Results 4.1 Experimental Setup 4.2 Results 4.3 Discussion 5 Conclusion References Don’t Tear Your Hair Out: Analysis of the Impact of Skin Hair on the Diagnosis of Microscopic Skin Lesions 1 Introduction 2 Related Work for Hair Detection 3 Methods 3.1 Hair Segmentation 3.2 Augmentations 3.3 Skin Lesion Classification 4 Results 4.1 Hair Segmentation 4.2 Skin Lesion Classification 5 Conclusions and Future Work References Deep Learning Based Segmentation of Breast Lesions in DCE-MRI 1 Introduction 2 State of the Art 3 Materials and Methods 3.1 Data 3.2 Pre-processing 3.3 Segmentation Algorithm 4 Results and Discussion 4.1 Experiment 1: Threshold 4.2 Experiment 2: Optimizer 4.3 Experiment 3: Loss Function 4.4 Experiment 4: Patch Size 4.5 Implementation Details 4.6 Discussion 5 Conclusions and Future Works References Fall Detection and Recognition from Egocentric Visual Data: A Case Study 1 Introduction 2 Related Works 2.1 Fall Detection by Fixed Visual Sensors 2.2 Fall Detection by Wearable Devices 2.3 Fall Detection by Wearable Cameras 3 Data Set 4 Method 4.1 Extraction of Frames 4.2 Feature Extraction 4.3 Fusion of Features and Classification Model 5 Experiments and Results 5.1 Experimental Design 5.2 Performance Measurements 5.3 Results 6 Discussion 7 Conclusions References Deep Attention Based Semi-supervised 2D-Pose Estimation for Surgical Instruments 1 Introduction 2 Related Work 3 Methodology 3.1 Network Architecture 3.2 Post-processing 3.3 Total Variation as a Confidence Measure for Pose Estimation 3.4 Training Details 4 Experiments 4.1 Datasets 4.2 Results Using RMIT Dataset 4.3 Results Using Endovis Dataset 5 Conclusion References Development of an Augmented Reality System Based on Marker Tracking for Robotic Assisted Minimally Invasive Spine Surgery 1 Introduction 2 Methods 2.1 Marker System Selection 2.2 Server-Client Communication 2.3 Evaluation Protocol 3 Results 3.1 Localization Accuracy of the Pose Estimation 3.2 Runtime 3.3 Robustness to External Influences 3.4 Communication and 3D Visualization 4 Discussion 5 Conclusion References Towards Stroke Patients' Upper-Limb Automatic Motor Assessment Using Smartwatches 1 Introduction 2 State of the Art 3 Experimentation Protocol 4 Methodology 4.1 Data Capture and Preprocessing 4.2 Data Labelling 4.3 Segmentation 4.4 Classification 5 Results 5.1 Dataset 5.2 Results 6 Conclusion References Multimodal Detection of Tonic–Clonic Seizures Based on 3D Acceleration and Heart Rate Data from an In-Ear Sensor 1 Introduction 2 Related Work 3 Method 3.1 Data Preparation 3.2 Learning Process 4 Experiments 4.1 Dataset 4.2 Experimental Setup 4.3 Results 4.4 Discussion 5 Conclusion and Future Work References Deep Learning Detection of Cardiac Akinesis in Echocardiograms 1 Introduction 2 Related Works 3 Proposed Method 3.1 Dataset 3.2 Network Specifications 4 Experimental Results 5 Conclusions References Prediction of Minimally Conscious State Responder Patients to Non-invasive Brain Stimulation Using Machine Learning Algorithms 1 Introduction 1.1 Methods 2 Results 2.1 Pre-EEG (Stimulation and Sham) 2.2 Pre-EEG (Stimulation and Sham) Augmented with Bootstrap 2.3 Discussion 3 Conclusions References Sinc-Based Convolutional Neural Networks for EEG-BCI-Based Motor Imagery Classification 1 Introduction 2 Sinc Layer 3 The Sinc-EEGNet Architecture 4 Experiments 5 Results 6 Conclusions References An Analysis of Tasks and Features for Neuro-Degenerative Disease Assessment by Handwriting 1 Introduction 2 Classic Velocity-Based Features 3 Additional Kinematic-Based Features 3.1 Maxwell-Boltzmann Distribution 3.2 Discrete Transformations 4 Experiment 5 Conclusions References A Comparative Study on Autism Spectrum Disorder Detection via 3D Convolutional Neural Networks 1 Introduction 2 Related Work 2.1 ASD Detection 2.2 3D Convolutional Neural Networks (CNN) 3 3D CNN for ASD 3.1 C3D 3.2 I3D 3.3 3D ResNet 3.4 The Proposed 3D ResNeSt 3.5 Dataset 3.6 Data Preprocessing 4 Experiments and Results 4.1 Implementation Details 4.2 Experimental Results 5 Conclusion References A Multi Classifier Approach for Supporting Alzheimer's Diagnosis Based on Handwriting Analysis 1 Introduction 2 Related Work 3 The Multi Classifier Architecture 4 Experimental Results 4.1 Implementation Details 4.2 Dataset 4.3 Tasks Characterisation 4.4 Baseline Evaluation Session 4.5 The Basic Classifiers 4.6 Combining All 4.7 Combining the Best 5 Conclusions References A Lightweight Spatial Attention Module with Adaptive Receptive Fields in 3D Convolutional Neural Network for Alzheimer’s Disease Classification 1 Introduction 2 Related Work 2.1 Deep Learning Methods for AD Classification 2.2 Attention Mechanism 2.3 Dilated Convolution 3 Method 3.1 3D Spatial Attention Module with Adaptive Receptive Fields 3.2 Data and Preprocessing 3.3 Experiment Setup 4 Result and Discussion 4.1 Comparisons Using Different Single-Branch Cases 4.2 Comparisons Using Different Two-Branch Cases 4.3 Comparisons Using Different Single-Branch and Two-Branch Cases 4.4 Comparisons with Related Studies 5 Conclusion References Handwriting-Based Classifier Combination for Cognitive Impairment Prediction 1 Introduction 2 The Tasks 3 Data Collection and Feature Extraction 4 The Proposed Approach 5 Experiments and Results 6 Conclusions References CADL2020 - Workshop on Computational Aspects of Deep Learning Preface Organization General Chairs Program Committee WaveTF: A Fast 2D Wavelet Transform for Machine Learning in Keras 1 Introduction 2 Background 2.1 Wavelet Transform 2.2 TensorFlow and Keras 3 Related Work 3.1 PyWavelets 3.2 pypwt 3.3 TF-Wavelets 4 Implementation 4.1 Direct Transform 4.2 Inverse Transform 4.3 Correctness 5 Performance Results 5.1 Raw Transformation 5.2 Machine Learning 6 Software Availability 7 Conclusion and Future Work References Convergence Dynamics of Generative Adversarial Networks: The Dual Metric Flows 1 Introduction 1.1 Motivation: W-GANs 1.2 Mathematical Setting 2 Theoretical Results 2.1 Motivation and Literature Review 2.2 Basic Reminders 2.3 Definition of (EDI Style) Equilibrium Flows 2.4 Convergence of Numerical Schemes 3 Applications 4 Discussion and Conclusion References Biomedical Named Entity Recognition at Scale 1 Introduction 2 NER Model Implementation in Spark NLP 3 Implementation Details and Experimental Results 3.1 Datasets 3.2 Overview of Experimental Setup 3.3 Experiment Results 4 Conclusion A Appendices References PyraD-DCNN: A Fully Convolutional Neural Network to Replace BLSTM in Offline Text Recognition Systems 1 Introduction 2 Related Work 3 PyraD-DCNN Model 3.1 Design Principles 3.2 Overall Architecture 4 Experiments 4.1 Data 4.2 Implementation Details 4.3 Ablation Study 5 Results 5.1 Experiment on Small-ID 5.2 Experiment on Big-ID 5.3 Discussion 6 Conclusion References Learning Sparse Filters in Deep Convolutional Neural Networks with a l1/l2 Pseudo-Norm 1 Introduction 2 Related Work 2.1 Network Pruning 2.2 Weight Sparsity 3 Training with Kernel-Sparsity 3.1 Kernel-Sparsity Regularization 3.2 Training with Kernel-Sparsity Regularization 3.3 Setting Kernels to Zero 4 Experiments 4.1 Experiments on LeNet 4.2 VGG on CIFAR10 5 Conclusion References Multi-node Training for StyleGAN2 1 Introduction 2 Multi-node Training via Horovod 2.1 Process Parallelism 2.2 Data Sharding 2.3 Gradient Averaging 2.4 Multi-node Metrics 3 Validation 4 Scaling Tests 4.1 Strong Scaling 4.2 Weak Scaling 5 Conclusion References Flow R-CNN: Flow-Enhanced Object Detection 1 Introduction 2 Related Work 2.1 Region-Based Methods 2.2 Regression-Based Methods 2.3 Flow-Based Object Detection 3 Flow R-CNN 3.1 Object-Based Motion Analysis 3.2 Mask R-CNN 3.3 Proposed Architecture 4 Experimental Results 4.1 Object Detection Datasets 4.2 Experimental Environment 4.3 Comparative Evaluation 5 Conclusions References Compressed Video Action Recognition Using Motion Vector Representation 1 Introduction 2 Related Works 3 Proposed Approach 3.1 Motion Vector 3.2 Key Information Selection 3.3 Motion Vector Representation 3.4 Baseline Model 4 Experiments 4.1 Datasets and Experimental Details 4.2 Accuracy and Efficiency 4.3 Ablation Studies 4.4 Visualizations 5 Conclusions References Introducing Region Pooling Learning 1 Introduction 2 Related Work 3 Region Pooling Learning 4 Experiments and Results 4.1 Average-Max Pooling Behavior 4.2 CIFAR-10 4.3 ImageNet 5 Conclusion References Second Order Bifurcating Methodology for Neural Network Training and Topology Optimization 1 Introduction 2 Related Work 3 Method 3.1 Horizontal Tangent Parabola (HTP) 3.2 Vertical Tangent Parabola (VTP) 3.3 Algorithm 3.4 Example 1 3.5 Example 2 4 Training a Radial Basis Function NN 5 Experiments 5.1 Interpolation of a 2D Surface 5.2 Learning the Kernel Surface 5.3 Application in Convolutional Neural Networks 6 Conclusions References Author Index