دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Stéphane P. A. Bordas, Alexander Menk, Sundararajan Natarajan سری: ISBN (شابک) : 0470667087, 9780470667088 ناشر: Wiley سال نشر: 2023 تعداد صفحات: 368 [365] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Partition of Unity Methods: The Extended Finite Element Method (Wiley Series in Computational Mechanics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای تقسیمبندی وحدت: روش المان محدود بسط یافته (سری وایلی در مکانیک محاسباتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Partition of Unity Methods Contents List of Contributors Preface Acknowledgments 1 Introduction 1.1 The Finite Element Method 1.2 Suitability of the Finite Element Method 1.3 Some Limitations of the FEM 1.4 The Idea of Enrichment 1.5 Conclusions References 2 A Step-by-Step Introduction to Enrichment 2.1 History of Enrichment for Singularities and Localized Gradients 2.1.1 Enrichment by the ``Method of Supplementary Singular Functions'' 2.1.2 Finite Element with a Singularity 2.1.3 Partition of Unity Enrichment 2.1.4 Mesh Overlay Methods 2.1.5 Enrichment for Strong Discontinuities 2.2 Weak Discontinuities for One-dimensional Problems 2.2.1 Conventional Finite Element Solution 2.2.2 eXtended Finite Element Solution 2.2.3 eXtended Finite Element Solution with Nodal Subtraction/Shifting 2.2.4 Solution 2.3 Strong Discontinuities for One-dimensional Problem 2.4 Conclusions References 3 Partition of Unity Revisited 3.1 Completeness, Consistency, and Reproducing Conditions 3.2 Partition of Unity 3.3 Enrichment 3.3.1 Description of Geometry of Enrichment Features 3.3.2 Choice of Enrichment Functions 3.3.3 Imposition of boundary conditions 3.3.4 Numerical Integration of theWeak Form 3.4 Numerical Examples 3.4.1 One-Dimensional Multiple Interface 3.4.2 Two-Dimensional Circular Inhomogeneity 3.4.3 Infinite Plate with a Center Crack Under Tension 3.5 Conclusions References 4 Advanced Topics 4.1 Size of the Enrichment Zone 4.2 Numerical Integration 4.2.1 Polar Integration 4.2.2 Equivalent Polynomial Integration 4.2.3 Conformal Mapping 4.2.4 Strain Smoothing in XFEM 4.3 Blending Elements and Corrections 4.3.1 Blending Between Different Partitions of Unity 4.3.2 Interpolation Error in Blending Elements 4.3.3 Addressing Blending Phenomena 4.4 Preconditioning Techniques 4.4.1 The First Preconditioner Proposed for the XFEM 4.4.2 A domain Decomposition Preconditioner for the XFEM References 5 Applications 5.1 Linear Elastic Fracture in Two Dimensions with XFEM 5.1.1 Inclined Crack in Tension 5.1.2 Example of a Crack Inclusion Interaction Problem 5.1.3 Effect of the Distance Between the Crack and the Inclusion 5.2 Numerical Enrichment for Anisotropic Linear Elastic Fracture Mechanics 5.3 Creep and Crack Growth in Polycrystals 5.4 Fatigue Crack Growth Simulations 5.5 Rectangular Plate with an Inclined Crack Subjected to Thermo-Mechanical Loading References 6 Recovery-Based Error Estimation and Bounding in XFEM 6.1 Introduction 6.2 Error Estimation in the Energy Norm. The ZZ Error Estimator 6.2.1 The SPR Technique 6.2.2 The MLS Approach 6.3 Recovery-based Error Estimation in XFEM 6.3.1 The SPR-CX Technique 6.3.2 The XMLS Technique 6.3.3 The MLS-CX Technique 6.3.4 On the Roles of Enhanced Recovery and Admissibility 6.4 Recovery Techniques in Error Bounding. Practical Error Bounds. 6.5 Error Estimation in Quantities of Interest 6.5.1 Recovery-based Estimates for the Error in Quantities of Interest 6.5.2 The Stress Intensity Factor as QoI: Error Estimation References 7 ????-FEM: An Efficient Simulation Tool Using Simple Meshes for Problems in Structure Mechanics and Heat Transfer 7.1 Introduction 7.2 Linear Elasticity 7.2.1 Dirichlet Conditions 7.2.2 Mixed Boundary Conditions 7.3 Linear Elasticity with Multiple Materials 7.4 Linear Elasticity with Cracks 7.5 Heat Equation 7.6 Conclusions and Perspectives References 8 eXtended Boundary Element Method (XBEM) for Fracture Mechanics and Wave Problems 8.1 Introduction 8.2 Conventional BEM Formulation 8.2.1 Elasticity 8.2.2 Helmholtz Wave Problems 8.3 Shortcomings of the Conventional Formulations 8.4 Partition of Unity BEM Formulation 8.5 XBEM for Accurate Fracture Analysis 8.5.1 Williams Expansions 8.5.2 Local XBEM Enrichment at Crack Tips 8.5.3 Results 8.5.4 Auxiliary Equations and Direct Evaluation of Stress Intensity Factors 8.5.5 Fracture in Anisotropic Materials 8.5.6 Conclusions 8.6 XBEM for Short Wave Simulation 8.6.1 Background to the Development of Plane Wave Enrichment 8.6.2 Plane Wave Enrichment 8.6.3 Evaluation of Boundary Integrals 8.6.4 Collocation Strategy and Solution 8.6.5 Results 8.6.6 Choice of Basis Functions 8.6.7 Scattering from Sharp Corners 8.7 Conditioning and its Control 8.8 Conclusions References 9 Combined Extended Finite Element and Level Set Method (XFE-LSM) for Free Boundary Problems 9.1 Motivation 9.2 The Level Set Method 9.2.1 The Level Set Representation of the Embedded Interface 9.2.2 The Basic Level Set Evolution Equation 9.2.3 Velocity Extension 9.2.4 Level Set Function Update 9.2.5 Coupling the Level Set Method with the XFEM 9.3 Biofilm Evolution 9.3.1 Biofilms 9.3.2 Biofilm Modeling 9.3.3 Two-Dimensional Model 9.3.4 Solution Strategy 9.3.5 Variational Form 9.3.6 Enrichment Functions 9.3.7 Interface Conditions 9.3.8 Interface Speed Function 9.3.9 Accuracy and Convergence 9.3.10 Numerical Results 9.4 Conclusion Acknowledgment References 10 XFEM for 3D Fracture Simulation 10.1 Introduction 10.2 Governing Equations 10.3 XFEM Enrichment Approximation 10.4 Vector Level Set 10.5 Computation of Stress Intensity Factor 10.5.1 Brittle Material 10.5.2 Ductile Material 10.6 Numerical Simulations 10.6.1 Computation of Fracture Parameters 10.6.2 Fatigue Crack Growth in Compact Tension Specimen 10.7 Summary References 11 XFEM Modeling of Cracked Elastic-Plastic Solids 11.1 Introduction 11.2 Conventional von Mises Plasticity 11.2.1 Constitutive Model 11.2.2 Asymptotic Crack Tip Fields 11.2.3 XFEM Enrichment 11.2.4 Numerical Implementation 11.2.5 Representative Results 11.3 Strain Gradient Plasticity 11.3.1 Constitutive Model 11.3.2 Asymptotic Crack Tip Fields 11.3.3 XFEM Enrichment 11.3.4 Numerical Implementation 11.3.5 Representative Results 11.4 Conclusions References 12 An Introduction to Multiscale analysis with XFEM 12.1 Introduction 12.1.1 Types of Multiscale Analysis 12.2 Molecular Statics 12.2.1 Atomistic Potentials 12.2.2 A simple 1D Harmonic Potential Example 12.2.3 The Lennard-Jones Potential 12.2.4 The Embedded Atom Method 12.3 Hierarchical Multiscale Models of Elastic Behavior – The Cauchy-Born Rule 12.4 Current Multiscale Analysis – The Bridging Domain Method 12.5 The eXtended Bridging Domain Method 12.5.1 Simulation of a Crack Using XFEM References Index