ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Partial Differential Equations: Analytical Methods and Applications

دانلود کتاب معادلات دیفرانسیل جزئی: روش ها و کاربردهای تحلیلی

Partial Differential Equations: Analytical Methods and Applications

مشخصات کتاب

Partial Differential Equations: Analytical Methods and Applications

ویرایش:  
نویسندگان: , ,   
سری: Textbooks in Mathematics 
ISBN (شابک) : 9781138339835 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 384
[397] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Partial Differential Equations: Analytical Methods and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب معادلات دیفرانسیل جزئی: روش ها و کاربردهای تحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب معادلات دیفرانسیل جزئی: روش ها و کاربردهای تحلیلی

این جلد تمام موضوعات پایه یک دوره معادلات دیفرانسیل جزئی (PDE) برای دانشجویان مقطع کارشناسی یا دوره مبتدی برای دانشجویان کارشناسی ارشد را پوشش می دهد. این توضیح فیزیکی کیفی نتایج ریاضی را با حفظ سطح مورد انتظار دقت ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

This volume covers all the basic topics of a Partial Differential Equations (PDE) course for undergraduate students or a beginners\' course for graduate students. It provides qualitative physical explanation of mathematical results while maintaining the expected level of rigour.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Preface
1. Introduction
	1.1 Basic Definitions
	1.2 Examples
2. First-Order Equations
	2.1 Linear First-Order Equations
		2.1.1 General Solution
		2.1.2 Initial Condition
	2.2 Quasilinear First-Order Equations
		2.2.1 Characteristic Curves
		2.2.2 Examples
3. Second-Order Equations
	3.1 Classification of Second-Order Equations
	3.2 Canonical Forms
		3.2.1 Hyperbolic Equations
		3.2.2 Elliptic Equations
		3.2.3 Parabolic Equations
4. The Sturm-Liouville Problem
	4.1 General Consideration
	4.2 Examples of Sturm-Liouville Problems
5. One-Dimensional Hyperbolic Equations
	5.1 Wave Equation
	5.2 Boundary and Initial Conditions
	5.3 Longitudinal Vibrations of a Rod and Electrical Oscillations
		5.3.1 Rod Oscillations: Equations and Boundary Conditions
		5.3.2 Electrical Oscillations in a Circuit
	5.4 Traveling Waves: D'Alembert Method
	5.5 Cauchy Problem for Nonhomogeneous Wave Equation
		5.5.1 D'Alembert's Formula
		5.5.2 Green's Function
		5.5.3 Well-Posedness of the Cauchy Problem
	5.6 Finite Intervals: The Fourier Method for Homogeneous Equations
	5.7 The Fourier Method for Nonhomogeneous Equations
	5.8 The Laplace Transform Method: Simple Cases
	5.9 Equations with Nonhomogeneous Boundary Conditions
	5.10 The Consistency Conditions and Generalized Solutions
	5.11 Energy in the Harmonics
	5.12 Dispersion of Waves
		5.12.1 Cauchy Problem in an Infinite Region
		5.12.2 Propagation of a Wave Train
	5.13 Wave Propagation on an Inclined Bottom: Tsunami Effect
6. One-Dimensional Parabolic Equations
	6.1 Heat Conduction and Diffusion: Boundary Value Problems
		6.1.1 Heat Conduction
		6.1.2 Diffusion Equation
		6.1.3 One-dimensional Parabolic Equations and Initial and Boundary Conditions
	6.2 The Fourier Method for Homogeneous Equations
	6.3 Nonhomogeneous Equations
	6.4 Green's Function and Duhamel's Principle
	6.5 The Fourier Method for Nonhomogeneous Equations with Nonhomogeneous Boundary Conditions
	6.6 Large Time Behavior of Solutions
	6.7 Maximum Principle
	6.8 The Heat Equation in an Infinite Region
7. Elliptic Equations
	7.1 Elliptic Differential Equations and Related Physical Problems
	7.2 Harmonic Functions
	7.3 Boundary Conditions
		7.3.1 Example of an Ill-posed Problem
		7.3.2 Well-posed Boundary Value Problems
		7.3.3 Maximum Principle and its Consequences
	7.4 Laplace Equation in Polar Coordinates
	7.5 Laplace Equation and Interior BVP for Circular Domain
	7.6 Laplace Equation and Exterior BVP for Circular Domain
	7.7 Poisson Equation: General Notes and a Simple Case
	7.8 Poisson Integral
	7.9 Application of Bessel Functions for the Solution of Poisson Equations in a Circle
	7.10 Three-dimensional Laplace Equation for a Cylinder
	7.11 Three-dimensional Laplace Equation for a Ball
		7.11.1 Axisymmetric Case
		7.11.2 Non-axisymmetric Case
	7.12 BVP for Laplace Equation in a Rectangular Domain
	7.13 The Poisson Equation with Homogeneous Boundary Conditions
	7.14 Green's Function for Poisson Equations
		7.14.1 Homogeneous Boundary Conditions
		7.14.2 Nonhomogeneous Boundary Conditions
	7.15 Some Other Important Equations
		7.15.1 Helmholtz Equation
		7.15.2 Schrödinger Equation
8. Two-Dimensional Hyperbolic Equations
	8.1 Derivation of the Equations of Motion
		8.1.1 Boundary and Initial Conditions
	8.2 Oscillations of a Rectangular Membrane
		8.2.1 The Fourier Method for Homogeneous Equations with Homogeneous Boundary Conditions
		8.2.2 The Fourier Method for Nonhomogeneous Equations with Homogeneous Boundary Conditions
		8.2.3 The Fourier Method for Nonhomogeneous Equations with Nonhomogeneous Boundary Conditions
	8.3 Small Transverse Oscillations of a Circular Membrane
		8.3.1 The Fourier Method for Homogeneous Equations with Homogeneous Boundary Conditions
		8.3.2 Axisymmetric Oscillations of a Membrane
		8.3.3 The Fourier Method for Nonhomogeneous Equations with Homogeneous Boundary Conditions
		8.3.4 Forced Axisymmetric Oscillations
		8.3.5 The Fourier Method for Equations with Nonhomogeneous Boundary Conditions
9. Two-Dimensional Parabolic Equations
	9.1 Heat Conduction within a Finite Rectangular Domain
		9.1.1 The Fourier Method for the Homogeneous Heat Equation (Free Heat Exchange)
		9.1.2 The Fourier Method for Nonhomogeneous Heat Equation with Homogeneous Boundary Conditions
	9.2 Heat Conduction within a Circular Domain
		9.2.1 The Fourier Method for the Homogeneous Heat Equation
		9.2.2 The Fourier Method for the Nonhomogeneous Heat Equation
		9.2.3 The Fourier Method for the Nonhomogeneous Heat Equation with Nonhomogeneous Boundary Conditions
	9.3 Heat Conduction in an Infinite Medium
	9.4 Heat Conduction in a Semi-Infinite Medium
10. Nonlinear Equations
	10.1 Burgers Equation
		10.1.1 Kink Solution
		10.1.2 Symmetries of the Burger's Equation
	10.2 General Solution of the Cauchy Problem
		10.2.1 Interaction of Kinks
	10.3 Korteweg-de Vries Equation
		10.3.1 Symmetry Properties of the KdV Equation
		10.3.2 Cnoidal Waves
		10.3.3 Solitons
		10.3.4 Bilinear Formulation of the KdV Equation
		10.3.5 Hirota's Method
		10.3.6 Multisoliton Solutions
	10.4 Nonlinear Schrödinger Equation
		10.4.1 Symmetry Properties of NSE
		10.4.2 Solitary Waves
Appendix A: Fourier Series, Fourier and Laplace Transforms
	A.1 Periodic Processes and Periodic Functions
	A.2 Fourier Formulas
	A.3 Convergence of Fourier Series
	A.4 Fourier Series for Non-periodic Functions
	A.5 Fourier Expansions on Intervals of Arbitrary Length
	A.6 Fourier Series in Cosine or in Sine Functions
	A.7 Examples
	A.8 The Complex Form of the Trigonometric Series
	A.9 Fourier Series for Functions of Several Variables
	A.10 Generalized Fourier Series
	A.11 The Gibbs Phenomenon
	A.12 Fourier Transforms
	A.13 Laplace Transforms
	A.14 Applications of Laplace Transform for ODE
Appendix B: Bessel and Legendre Functions
	B.1 Bessel Equation
	B.2 Properties of Bessel Functions
	B.3 Boundary Value Problems and Fourier-Bessel Series
	B.4 Spherical Bessel Functions
	B.5 The Gamma Function
	B.6 Legendre Equation and Legendre Polynomials
	B.7 Fourier-Legendre Series in Legendre Polynomials
	B.8 Associated Legendre Functions
	B.9 Fourier-Legendre Series in Associated Legendre Functions
	B.10 Airy Functions
Appendix C: Sturm-Liouville Problem and Auxiliary Functions for One and Two Dimensions
	C.1 Eigenvalues and Eigenfunctions of 1D Sturm-Liouville Problem for Different Types of Boundary Conditions
	C.2 Auxiliary Functions
Appendix D: The Sturm-Liouville Problem for Circular and Rectangular Domains
	D.1 The Sturm-Liouville Problem for a Circle
	D.2 The Sturm-Liouville Problem for the Rectangle
Appendix E: The Heat Conduction and Poisson Equations for Rectangular Domains – Examples
	E.1 The Laplace and Poisson Equations for a Rectangular Domain with Nonhomogeneous Boundary Conditions – Examples
	E.2 The Heat Conduction Equations with Nonhomogeneous Boundary Conditions – Examples
Bibliography
Index




نظرات کاربران