دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2018
نویسندگان: Valeriu Ungureanu
سری: Smart Innovation, Systems and Technologies (Book 89)
ISBN (شابک) : 9783319751504, 3319751506
ناشر: Springer
سال نشر: 2018
تعداد صفحات: 347
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Pareto-Nash-Stackelberg Game and Control Theory: Intelligent Paradigms and Applications (Smart Innovation, Systems and Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه بازی و کنترل Pareto-Nash-Stackelberg: پارادایم ها و برنامه های هوشمند (نوآوری هوشمند ، سیستم ها و فناوری ها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک دیدگاه جامع جدید، چند هدفه و یکپارچه در مورد تئوری های بازی سنتی و کنترل ارائه می دهد. متشکل از 15 فصل، به سه بخش تقسیم شده است که بازی های غیرهمکاری را پوشش می دهد. مخلوطی از بازی های چند هدفه همزمان و متوالی؛ و کنترل چند عاملی بازیهای نوع پارتو-نش-استکلبرگ به ترتیب. آیا بهینه سازی چند معیاره، نظریه بازی و کنترل بهینه می توانند در یک نظریه منحصر به فرد ادغام شوند؟ آیا مدل های ریاضی و مفاهیم راه حلی وجود دارد که بتواند اساس یک پارادایم جدید را تشکیل دهد؟ آیا رویکرد و روش مشترکی برای حل مشکلات نوظهور وجود دارد؟ این کتاب به این پرسشها و مشکلات مرتبط دیگر میپردازد تا پایهای برای تئوری بازی و کنترل پارتو-نش-استکلبرگ ایجاد کند. مجموعه ای از بازی های همزمان / نش و متوالی / استکلبرگ، بازی های تک معیاری و چند معیاره / پارتو، ترکیبی از مفاهیم بازی Nash و Stackelberg و بهینه سازی پارتو، و همچنین طیف وسیعی از مفاهیم مربوط به کنترل سیستم را در نظر می گیرد. علاوه بر این، مشکلات یافتن و ارائه کل مجموعه راه حل ها را در نظر می گیرد. این کتاب برای محققان، اساتید، متخصصان و دانشجویان در زمینههای تئوری بازیها، تحقیقات عملیاتی، ریاضیات کاربردی، اقتصاد، علوم کامپیوتر و مهندسی در نظر گرفته شده است و همچنین به عنوان کتاب درسی برای دروس مختلف در این زمینهها عمل میکند.
This book presents a comprehensive new, multi-objective and integrative view on traditional game and control theories. Consisting of 15 chapters, it is divided into three parts covering noncooperative games; mixtures of simultaneous and sequential multi-objective games; and multi-agent control of Pareto-Nash-Stackelberg-type games respectively. Can multicriteria optimization, game theory and optimal control be integrated into a unique theory? Are there mathematical models and solution concepts that could constitute the basis of a new paradigm? Is there a common approach and method to solve emerging problems? The book addresses these and other related questions and problems to create the foundation for the Pareto-Nash-Stackelberg Game and Control Theory. It considers a series of simultaneous/Nash and sequential/Stackelberg games, single-criterion and multicriteria/Pareto games, combining Nash and Stackelberg game concepts and Pareto optimization, as well as a range of notions related to system control. In addition, it considers the problems of finding and representing the entire set of solutions. Intended for researches, professors, specialists, and students in the areas of game theory, operational research, applied mathematics, economics, computer science and engineering, it also serves as a textbook for various courses in these fields.
Preface Contents Symbols & Abbreviations 1 Introduction 1.1 Basic Preliminary Terminology 1.1.1 Conflict and Cooperation Notions 1.1.2 What is Game Theory? 1.1.3 Decision Making 1.1.4 Multi-Objective Optimization 1.1.5 Multi-Agent Decision Problems 1.1.6 Decision Making Problems in Situations of Risk 1.1.7 Decision Making Problems Under Uncertainty 1.1.8 Pascal's Wager 1.1.9 Standard Decision Theory Versus Game Theory 1.1.10 Strategy Notion 1.1.11 Brief History of Game Theory and Optimal Control 1.2 Game Theory Branches. General and Particular Models. Solution Concepts 1.2.1 Branches. General Models. Solution Concepts 1.2.2 Prisoner's Dilemma 1.2.3 To Cooperate or Not To Cooperate? 1.2.4 Coordination Games 1.2.5 Anti-Coordination Games 1.2.6 Antagonistic Games 1.2.7 Game Modelling and Solution Concepts 1.3 Strategic Form Games 1.4 Simultaneous/Nash Games 1.5 Sequential/Stackelberg Games 1.6 Optimal Control Theory 1.7 Applications 1.8 Game Theorists and Nobel Memorial Prize in Economic Sciences 1.9 Objectives and Outline References --- Noncooperative Games 2 Nash Equilibrium Conditions as Extensions of Some Classical Optimisation Theorems 2.1 Introduction 2.2 The Saddle Point and the Nash Equilibrium General Sufficient Condition 2.3 Necessary and Sufficient Conditions for Convex Strategic Games 2.4 Equilibrium Principles and Conditions for Multi-criteria Strategic Games 2.5 Conclusions References 3 Sets of Nash Equilibria in Polymatrix Mixed-Strategy Games 3.1 Introduction 3.2 Nash Equilibrium Sets in Bimatrix Mixed-Strategy Games 3.2.1 Algorithm for Nash Equilibrium Sets Computing in Bimatrix Games 3.2.2 Examples of Nash Equilibrium Sets Computing in Bimatrix Games 3.3 Nash Equilibrium Sets in Polymatrix Mixed-Strategy Games 3.3.1 Algorithm for Nash Equilibrium Sets Computing in Polymatrix Mixed-Strategy Games 3.4 Conclusions References Sets of Nash Equilibria in Bimatrix 2×3 Mixed-Strategy Games 4.1 Introduction 4.2 Main Results 4.2.1 Games on a Triangular Prism 4.2.2 Both Players Have Either Equivalent Strategies or Dominant Strategies 4.2.3 One Player Has Dominant Strategy 4.2.4 One Player Has Equivalent Strategies 4.2.5 Players Don't Have Dominant Strategies 4.3 Algorithm for Constructing the Set of Nash Equilibria 4.4 Conclusions References 5 Nash Equilibrium Sets in Dyadic Trimatrix Mixed-Strategy Games 5.1 Introduction 5.2 Main Results 5.2.1 Games on a Unit Cube 5.2.2 All Players Have Either Equivalent or Dominant Strategies 5.2.3 Two Players Have Dominant or Equivalent Strategies 5.2.4 Every Player Has Different Types of Strategies: Dominant, Equivalent, or Incomparable 5.2.5 Two Players Have Either Incomparable or Equivalent Strategies 5.2.6 All Players Have Incomparable Strategies 5.3 Algorithm 5.4 Conclusions References 6 Nash Equilibrium Set Function in Dyadic Mixed-Strategy Games 6.1 Game Statement and Its Simplification 6.2 Optimal Value Functions and Best Response Mappings 6.3 Nash Equilibria and Nash Equilibrium Set Function 6.4 Conclusions References 7 Stackelberg Equilibrium Sets in Polymatrix Mixed-Strategy Generalized Stackelberg Games 7.1 Introduction 7.2 Stackelberg Equilibrium Sets in Bimatrix Mixed-Strategy Stackelberg Games 7.3 Polynomial Algorithm for a Single Stackelberg … 7.4 Stackelberg Equilibrium Sets in Polymatrix Mixed-Strategy Games 7.5 Conclusions References 8 Strategic Form Games on Digraphs 8.1 Introduction 8.2 Matrix Games on Digraphs 8.2.1 Concepts 8.2.2 Properties of Digraph Matrix Games 8.3 Solvable Matrix Games on Digraphs 8.3.1 Maximin Directed Tree 8.3.2 Maximin Directed Path 8.3.3 Maximin Traveling Salesman Problem with Transportation 8.3.4 Maximin Cost Flow 8.4 Polymatrix Games on Digraphs 8.5 Dynamic Games on Digraphs 8.6 Concluding Remarks References --- Mixtures of Simultaneous & Sequential Games 9 Solution Principles for Mixtures of Simultaneous & Sequential Games 9.1 Introduction 9.2 Unsafe Stackelberg Equilibria. Existence and Properties 9.3 Safe Stackelberg Equilibria 9.4 Pseudo-Equilibria. Nash-Stackelberg Equilibria 9.5 Multi-objective Pseudo-Equilibria. Pareto-Nash-Stackelberg Equilibria 9.6 Concluding Remarks References 10 Computing Pareto–Nash Equilibrium Sets in Finite Multi-Objective Mixed-Strategy Games 10.1 Introduction 10.2 Pareto Optimality 10.3 Pareto–Nash Equilibria 10.4 Scalarization Technique 10.5 Pareto–Nash Equilibrium Set in Two-Player Mixed-Strategy Games 10.6 Pareto–Nash Equilibrium Sets in Multi-Criterion Polymatrix Mixed-Strategy Games 10.7 Conclusions References 11 Sets of Pareto–Nash Equilibria in Dyadic Two-Criterion Mixed-Strategy Games 11.1 Introduction 11.2 Pareto Optimality 11.3 Synthesis Function 11.4 Pareto–Nash Equilibrium 11.5 Dyadic Two-Criterion Mixed-Strategy Games 11.6 The Wolfram Language Program 11.7 Concluding Remarks References 12 Taxonomy of Strategic Games with Information Leaks & Corruption of Simultaneity 12.1 Introduction 12.1.1 Normal Form Game and Axioms 12.1.2 Axiom of Simultaneity and Its Corruption 12.1.3 Theory of Moves 12.2 Taxonomy of Bimatrix Games with Information Leaks 12.2.1 Knowledge and Types of Games 12.2.2 Taxonomy Elements 12.3 Solution Principles for Bimatrix Games with Information Leak … 12.3.1 Nash Taxon 12.3.2 Stackelberg Taxon 12.3.3 Maximin Taxon 12.3.4 Maximin-Nash Taxon 12.3.5 Optimum Taxon 12.3.6 Optimum-Nash Taxon 12.3.7 Optimum-Stackelberg Taxon 12.4 Taxonomy of Bimatrix Games with Information Leak and More Than Two Levels of Knowledge 12.5 Repeated Bimatrix Games with Information Leaks 12.6 Taxonomy of Polymatrix Games with Information Leaks and More Than Two Levels of Knowledge 12.7 Conclusions References --- Pareto-Nash-Stackelberg Game & Control Processes 13 Linear Discrete-Time Pareto-Nash-Stackelberg Control & its Principles 13.1 Introduction 13.2 Linear Discrete-Time Optimal Control Problem 13.3 Linear Discrete-Time Stackelberg Control Problem 13.4 Linear Discrete-Time Pareto-Stackelberg Control Problem 13.5 Linear Discrete-Time Nash-Stackelberg Control Problem 13.6 Linear Discrete-Time Pareto-Nash-Stackelberg Control Problem 13.7 Linear Discrete-Time Set-Valued Optimal Control Problem 13.8 Concluding Remarks References 14 Linear Discrete-Time Set-valued Pareto-Nash-Stackelberg Control & its Principles 14.1 Introduction 14.2 Linear Discrete-Time Set-Valued Optimal Control Problem 14.3 Linear Discrete-Time Set-Valued Stackelberg Control Problem 14.4 Linear Discrete-Time Set-Valued Pareto-Stackelberg Control Problem 14.5 Linear Discrete-Time Set-Valued Nash-Stackelberg Control Problem 14.6 Linear Discrete-Time Set-Valued Pareto-Nash-Stackelberg Control Problem 14.7 Concluding Remarks References 15 Linear Discrete Pareto-Nash-Stackelberg Control Processes with Echoes & Retroactive Future 15.1 Introduction 15.2 Optimal Control of Linear Discrete-Time Processes with Periodic Echoes 15.3 Optimal Control of Linear Discrete-Time Processes with Periodic Echoes and Retroactive Future 15.4 Stackelberg Control of Linear Discrete-Time Processes with Periodic Echoes 15.5 Stackelberg Control of Linear Discrete-Time Processes with Periodic Echoes and Retroactive Future 15.6 Pareto-Stackelberg Control of Discrete-Time Linear Processes with Periodic Echoes and Retroactive Future 15.7 Nash-Stackelberg Control of Linear Discrete-Time Processes with Echoes and Retroactive Future 15.8 Pareto-Nash-Stackelberg Control of Discrete-Time Linear Processes with Echoes and Retroactive Future 15.9 Concluding Remarks References Index