ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Parallelism in Matrix Computations

دانلود کتاب موازی سازی در محاسبات ماتریسی

Parallelism in Matrix Computations

مشخصات کتاب

Parallelism in Matrix Computations

ویرایش: 1 
نویسندگان: , ,   
سری: Scientific Computation 
ISBN (شابک) : 9789401771870, 9789401771887 
ناشر: Springer Netherlands 
سال نشر: 2016 
تعداد صفحات: 489 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 39,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب موازی سازی در محاسبات ماتریسی: Appl.Mathematics/روش های محاسباتی مهندسی، علوم محاسباتی و مهندسی، فیزیک عددی و محاسباتی، ریاضیات محاسبات، مهندسی به کمک کامپیوتر (CAD، CAE) و طراحی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Parallelism in Matrix Computations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب موازی سازی در محاسبات ماتریسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب موازی سازی در محاسبات ماتریسی



این کتاب اساساً به عنوان یک تک نگاری تحقیقاتی در نظر گرفته شده است که می تواند در دوره های تحصیلات تکمیلی برای طراحی الگوریتم های موازی در محاسبات ماتریسی نیز استفاده شود.

این کتاب دانش کلی اما نه گسترده ای از خطی عددی را فرض می کند. جبر، معماری های موازی، و پارادایم های برنامه نویسی موازی.

این کتاب شامل چهار بخش است: (I) مبانی. (II) محاسبات ماتریسی متراکم و ویژه. (III) محاسبات ماتریس پراکنده. و (IV) توابع و ویژگی های ماتریس. بخش اول به پارادایم‌های برنامه‌نویسی موازی و هسته‌های بنیادی، از جمله طرح‌های مرتب‌سازی مجدد برای ماتریس‌های پراکنده می‌پردازد. بخش دوم به محاسبات ماتریسی متراکم مانند الگوریتم‌های موازی برای حل سیستم‌های خطی، حداقل مربعات خطی، مسئله مقادیر ویژه جبری متقارن، و تجزیه ارزش تکی اختصاص دارد. همچنین با توسعه الگوریتم‌های موازی برای سیستم‌های خطی خاص مانند سیستم‌های نواری، واندرموند، تاپلیتز و بلوک تاپلیتز سروکار دارد. بخش سوم به محاسبات ماتریس پراکنده می‌پردازد: (الف) توسعه حل‌کننده‌های سیستم خطی تکراری موازی با تأکید بر پیش‌شرطی‌کننده‌های مقیاس‌پذیر، (ب) طرح‌های موازی برای به دست آوردن چند جفت ویژه شدید یا آن‌هایی که در یک بازه معین در طیف یک استاندارد وجود دارند. یا مسئله ارزش ویژه متقارن تعمیم یافته، و (ج) روش های موازی برای محاسبه چند تا از سه گانه های مفرد شدید. بخش چهارم بر توسعه الگوریتم های موازی برای توابع ماتریس و ویژگی های خاص مانند شبه طیف ماتریس و تعیین کننده تمرکز دارد. این کتاب همچنین پیشینه نظری و عملی لازم هنگام طراحی این الگوریتم‌ها را مرور می‌کند و شامل کتاب‌شناسی گسترده‌ای است که برای محققان و دانشجویان مفید خواهد بود.

این کتاب بسیاری از الگوریتم‌های موجود را گرد هم می‌آورد. برای محاسبات ماتریس بنیادی که دارای سابقه اثبات شده اجرای کارآمد از نظر مکان داده و انتقال داده بر روی سیستم های پیشرفته، و همچنین چندین الگوریتم که برای اولین بار ارائه می شوند، با تمرکز بر فرصت های موازی و استحکام الگوریتم.


توضیحاتی درمورد کتاب به خارجی

This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations.

It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms.

The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike.

The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.



فهرست مطالب

Front Matter....Pages i-xxx
Front Matter....Pages 1-1
Parallel Programming Paradigms....Pages 3-16
Fundamental Kernels....Pages 17-45
Front Matter....Pages 47-47
Recurrences and Triangular Systems....Pages 49-78
General Linear Systems....Pages 79-89
Banded Linear Systems....Pages 91-163
Special Linear Systems....Pages 165-225
Orthogonal Factorization and Linear Least Squares Problems....Pages 227-247
The Symmetric Eigenvalue and Singular-Value Problems....Pages 249-274
Front Matter....Pages 275-275
Iterative Schemes for Large Linear Systems....Pages 277-310
Preconditioners....Pages 311-341
Large Symmetric Eigenvalue Problems....Pages 343-405
Front Matter....Pages 407-407
Matrix Functions and the Determinant....Pages 409-438
Computing the Matrix Pseudospectrum....Pages 439-465
Back Matter....Pages 467-473




نظرات کاربران