ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Paradigms of Smart and Intelligent Communication, 5G and Beyond

دانلود کتاب پارادایم های ارتباطات هوشمند و هوشمند، 5G و فراتر از آن

Paradigms of Smart and Intelligent Communication, 5G and Beyond

مشخصات کتاب

Paradigms of Smart and Intelligent Communication, 5G and Beyond

ویرایش:  
نویسندگان: , , ,   
سری: Transactions on Computer Systems and Networks 
ISBN (شابک) : 9819901081, 9789819901081 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 296
[297] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Paradigms of Smart and Intelligent Communication, 5G and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پارادایم های ارتباطات هوشمند و هوشمند، 5G و فراتر از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
About the Editors
1 Artificial Cognitive Computing for Smart Communications, 5G and Beyond
	1.1 Introduction
	1.2 The Cognitive Computing Components
	1.3 The Architecture of Cognitive
	1.4 Cognitive Computing for Smart Communications
		1.4.1 The Cognitive Computing for the Society—Use Cases
		1.4.2 The Cognitive Analytics as Parts of Cognitive Computing
	1.5 Impact of Covid-19 on Cognitive Computing Market 6 Cooperative and Cognitive Network for 5G Network
	1.6 Challenges and Future Aspects of Cognitive Computation on 5G and Communication
	1.7 Summary
	References
2 Green IoT Networks Using Machine Learning, Deep Learning for 5G Networks
	2.1 Introduction
	2.2 Recent Advances in 5G IoT Ecosystem
	2.3 Green IoT Enabling Technologies
	2.4 IoT Ecosystem Energy Management Techniques
		2.4.1 Power Saving Techniques
		2.4.2 Power Gathering Methods
	2.5 Energy Management in IoT Cloud Computing Techniques
		2.5.1 Cloud Computing (CC)
		2.5.2 Fog Computing (FC)
		2.5.3 Edge Computing (EC)
	2.6 Savvy Power Management Techniques for Internet of Things
		2.6.1 Machine Learning
		2.6.2 Deep Learning
	2.7 Application of Energy Management in Various IoT Applications
		2.7.1 Smart Home
		2.7.2 Agriculture
		2.7.3 Healthcare
		2.7.4 Industrial IoT (IIoT)
	2.8 Summary
	References
3 Integration of IoT and 5G Communication
	3.1 Introduction
		3.1.1 The Advantages of 5G
		3.1.2 Enable Factors of 5G for IoT
	3.2 5G Applications in IoT
	3.3 Technological Development with a 5G Antenna
	3.4 Summary
	References
4 Role of IoT and Antenna Array in Smart Communication and 5G
	4.1 Introduction
	4.2 Basic Structure of IoT with Its Protocols
		4.2.1 Constrained Application Protocol (CoAP)
		4.2.2 Message Queue Telemetry Transport Protocol (MQTT)
		4.2.3 Advanced Message Queuing Protocol (AMQP)
		4.2.4 Data Distribution Service (DDS) Protocol
	4.3 Employment of IoT and Antenna Array in 5G
	4.4 Design and Simulation of Antenna and Antenna Array Suitable for 5G
		4.4.1 Design of 5 GHz Circular Patch Antenna
		4.4.2 Design of 5 GHz 2 × 2 Microstrip Patch Antenna Finite Array
	4.5 Applications and Examples of IoT in the Smart Communication and 5G
		4.5.1 Role of Smart Communication Technologies for Smart Retailing
		4.5.2 Impact of IoT on 5G
		4.5.3 5G Challenges
	4.6 Application of 5G Over IoT in the Different Areas
		4.6.1 Automated Self-driving Cars and Other Vehicles
		4.6.2 Smart Automated Healthcare
		4.6.3 Smart Logistics and Supply Chain Management
		4.6.4 Clean and Smart Cities and Town
		4.6.5 Smart Marketing and Retail or Chain Store
		4.6.6 Intelligent Automotive and Smart Industries
		4.6.7 Smart Agriculture
		4.6.8 Establishment Between 5G and IoT Eco-system
	4.7 Future Enhancement in 5G Using Antenna Array
	References
5 Machine Learning and Deep Reinforcement Learning in Wireless Networks and Communication Applications
	5.1 Introduction
		5.1.1 Deep Learning
		5.1.2 Reinforcement Learning (RL)
		5.1.3 Deep Reinforcement Learning (DRL)
		5.1.4 From the RL to the DRL
		5.1.5 Machine Learning (ML)
	5.2 Applications Deep Reinforcement Learning Techniques
		5.2.1 Application in Wireless Network
	5.3 DRL Applications for Future-Generation Mobile Networks
		5.3.1 Power Management and Power Control
	5.4 Future Prediction of the Wireless Networks
	5.5 Wireless Mobile Communications and the Future of the Indian Cellular Market
		5.5.1 The Growth Factor of the Telecom Sector in India
		5.5.2 Methodology Used in the Overall World
		5.5.3 Market Size Especially in India
		5.5.4 Growth Factor of Telecommunication in India
		5.5.5 Major Market Players or Companies of Telecommunication in India
	5.6 Summary
	References
6 Detection of Consumption of Alcohol Using Artificial Intelligence
	6.1 Introduction
	6.2 Ways to Detect Consumption of Alcohol
		6.2.1 Breathalyzer
		6.2.2 Identification Through Infrared Face Images
	6.3 Methodology
		6.3.1 Using IR Sensor Thermal Imaging Cameras
		6.3.2 Using Breathalyzers
	6.4 Summary
	References
7 Application of Machine Learning in Finger Vein Pattern Recognition
	7.1 Introduction
		7.1.1 Literature Survey
		7.1.2 Problem Formulation
	7.2 Methodology
		7.2.1 Feature Withdrawal Techniques
	7.3 Calculation and Verification of Accuracy
		7.3.1 Machine Learning Algorithm
	7.4 Results and Discussion
		7.4.1 Accuracy and Calculation
	7.5 Results Analysis
	7.6 Summary
	References
8 Machine Learning Techniques for Anomaly Detection Application Domains
	8.1 Introduction
	8.2 Anomaly: What Is It?
		8.2.1 Point Anomalies
		8.2.2 Contextual Anomalies
		8.2.3 Collective Anomalies
	8.3 Aspects of Anomaly Detection and Challenges
		8.3.1 Aspects of Anomaly Detection
		8.3.2 Challenges Faced in Anomaly Detection
	8.4 Application Domains
		8.4.1 Medical and Public Health Anomaly Detection
		8.4.2 Intrusion Detection
		8.4.3 Industrial Damage Detection
		8.4.4 Fault Detection in Mechanical Units
		8.4.5 Structural Defect Detection
		8.4.6 Fraud Detection
		8.4.7 Sensor Networks
		8.4.8 Image Processing
		8.4.9 Text Data
		8.4.10 Data Leakage Prevention
	8.5 Anomaly Detection Techniques
		8.5.1 Supervised Methods
		8.5.2 UnSupervised Methods
	8.6 Pros and Cons of Supervised and Unsupervised Techniques
	8.7 Summary
	References
9 Application of AI & ML in 5G Communication
	9.1 Introduction
	9.2 Evolution from 1 to 5G
	9.3 5th Generation Wireless Network Technology
	9.4 5G Wireless Networks Security
	9.5 Impact of AI/ML in 5G Wireless Network Technology
	9.6 Role of AI on 5G Networks
		9.6.1 Relevance of 5G to the Field of AI
	9.7 5G Security: AI/ML Applications
	9.8 Machine Learning for 5G Technology: A Case Study
		9.8.1 Deep Convolutional Neural Networks Application to Detect Signal Modulation Types
		9.8.2 Modulation Recognition
	9.9 Modulation Classifier Consideration & Model Architecture
	9.10 Results Analysis
	9.11 Challenges and Future of 5G Wireless Technology
		9.11.1 ML Servies for 5G Wireless Communications Include
		9.11.2 Challenges for ML Application in 5G Technology
	9.12 Summary
	References
10 Software Defined Network-Based Management Architecture for 5G Network
	10.1 Introduction
	10.2 Software Defined Network
		10.2.1 SDN Architecture
		10.2.2 SDN Management Architecture
		10.2.3 How SDN Works
		10.2.4 Benefits of SDN
	10.3 5G Mobile Network
		10.3.1 5G Architecture
		10.3.2 Features of 5G Mobile Technology
		10.3.3 How 5G Works
		10.3.4 Challenges in 5G Network
	10.4 SDN Implementation in 5G Mobile Network
		10.4.1 SDN Management Architecture (Proposed Approach)
		10.4.2 SDN Management Architecture Operation
		10.4.3 SDN-Based Management for 5G Mobile Network
		10.4.4 SDN Benefits for 5G
	10.5 Conclusion and Future Work (Summary)
	References
11 Reversible Logic Based Single Layer Flip Flops and Shift Registers in QCA Framework for the Application of Nano-communication
	11.1 Introduction
	11.2 Preliminary Overview
		11.2.1 Reversible Logic
		11.2.2 QCA Background
	11.3 QCA Layout of Reversible Fredkin Gate—A Novel Approach
		11.3.1 Fault Characterization
		11.3.2 Energy Dissipation Analysis of the Presented QCA Structure
		11.3.3 QCA Layout of Fredkin Gate with 2D Clocking Scheme
	11.4 Proposed Reversible QCA Circuits
		11.4.1 QCA Based Reversible D Latch
		11.4.2 QCA Based Reversible Master Slave D Flip Flop
		11.4.3 QCA Based Reversible DET Flip Flop
		11.4.4 Design of Proposed Reversible Shift Registers
	11.5 Performance Analysis of Proposed Reversible QCA Circuits
	11.6 Summary
	References
12 Machine Learning Technique for Few-Mode Fiber Design with Inverse Modelling for 5G and Beyond
	12.1 Introduction
		12.1.1 Optical Fiber in 5G and Beyond
		12.1.2 Types of Fiber Used in 5G Networks
		12.1.3 Role of Few-Mode Fiber in 5G Networks
		12.1.4 State-Of-Art in the Design of Weakly-Coupled FMFs
		12.1.5 Machine-Learning in FMF Design
	12.2 Proposed FMF Structure
		12.2.1 T-FMF Structure
		12.2.2 Design Methodology
		12.2.3 Machine Learning Model
	12.3 Discussion of Proposed model with RMSE and MSE
	12.4 Summary
	References
13 IoT for Landslides: Applications, Technologies and Challenges
	13.1 Introduction
	13.2 Related Concepts
		13.2.1 Internet of Things
		13.2.2 IoT Application for Landslide Prevention
	13.3 IoT Technology for Landslide Studies
		13.3.1 Overview
		13.3.2 Sensor Network
		13.3.3 Fibre Optic Sensing Technology
		13.3.4 Cloud Computing Platform
	13.4 Challenges with IoT-Based Monitoring System
	13.5 Summary
	References
14 A Review: Dust Cleaning Approach of Solar Photovoltaic System Using IOT & ML
	14.1 Introduction
	14.2 Natural Cleaning System
	14.3 Manual Cleaning System
	14.4 Mechanical Cleaning Techniques
	14.5 Sprinkle System
	14.6 Cleaning Approach Based on IOT
	14.7 Cleaning Approach Based on Machine Learning
	14.8 Summary
	References
15 Prediction of Heart Disease Using Hybrid Machine Learning Technique
	15.1 Introduction
	15.2 Related Work
	15.3 Methodology and Data Set Analysis
		15.3.1 Experimental Procedures
	15.4 Feature Engineering
		15.4.1 Performance Analysis
	15.5 Predictive Analysis
	15.6 Conclusion
	References




نظرات کاربران