دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Amrita Rai, Dinesh Kumar Singh, Amit Sehgal, Korhan Cengiz سری: Transactions on Computer Systems and Networks ISBN (شابک) : 9819901081, 9789819901081 ناشر: Springer سال نشر: 2023 تعداد صفحات: 296 [297] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Paradigms of Smart and Intelligent Communication, 5G and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پارادایم های ارتباطات هوشمند و هوشمند، 5G و فراتر از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors 1 Artificial Cognitive Computing for Smart Communications, 5G and Beyond 1.1 Introduction 1.2 The Cognitive Computing Components 1.3 The Architecture of Cognitive 1.4 Cognitive Computing for Smart Communications 1.4.1 The Cognitive Computing for the Society—Use Cases 1.4.2 The Cognitive Analytics as Parts of Cognitive Computing 1.5 Impact of Covid-19 on Cognitive Computing Market 6 Cooperative and Cognitive Network for 5G Network 1.6 Challenges and Future Aspects of Cognitive Computation on 5G and Communication 1.7 Summary References 2 Green IoT Networks Using Machine Learning, Deep Learning for 5G Networks 2.1 Introduction 2.2 Recent Advances in 5G IoT Ecosystem 2.3 Green IoT Enabling Technologies 2.4 IoT Ecosystem Energy Management Techniques 2.4.1 Power Saving Techniques 2.4.2 Power Gathering Methods 2.5 Energy Management in IoT Cloud Computing Techniques 2.5.1 Cloud Computing (CC) 2.5.2 Fog Computing (FC) 2.5.3 Edge Computing (EC) 2.6 Savvy Power Management Techniques for Internet of Things 2.6.1 Machine Learning 2.6.2 Deep Learning 2.7 Application of Energy Management in Various IoT Applications 2.7.1 Smart Home 2.7.2 Agriculture 2.7.3 Healthcare 2.7.4 Industrial IoT (IIoT) 2.8 Summary References 3 Integration of IoT and 5G Communication 3.1 Introduction 3.1.1 The Advantages of 5G 3.1.2 Enable Factors of 5G for IoT 3.2 5G Applications in IoT 3.3 Technological Development with a 5G Antenna 3.4 Summary References 4 Role of IoT and Antenna Array in Smart Communication and 5G 4.1 Introduction 4.2 Basic Structure of IoT with Its Protocols 4.2.1 Constrained Application Protocol (CoAP) 4.2.2 Message Queue Telemetry Transport Protocol (MQTT) 4.2.3 Advanced Message Queuing Protocol (AMQP) 4.2.4 Data Distribution Service (DDS) Protocol 4.3 Employment of IoT and Antenna Array in 5G 4.4 Design and Simulation of Antenna and Antenna Array Suitable for 5G 4.4.1 Design of 5 GHz Circular Patch Antenna 4.4.2 Design of 5 GHz 2 × 2 Microstrip Patch Antenna Finite Array 4.5 Applications and Examples of IoT in the Smart Communication and 5G 4.5.1 Role of Smart Communication Technologies for Smart Retailing 4.5.2 Impact of IoT on 5G 4.5.3 5G Challenges 4.6 Application of 5G Over IoT in the Different Areas 4.6.1 Automated Self-driving Cars and Other Vehicles 4.6.2 Smart Automated Healthcare 4.6.3 Smart Logistics and Supply Chain Management 4.6.4 Clean and Smart Cities and Town 4.6.5 Smart Marketing and Retail or Chain Store 4.6.6 Intelligent Automotive and Smart Industries 4.6.7 Smart Agriculture 4.6.8 Establishment Between 5G and IoT Eco-system 4.7 Future Enhancement in 5G Using Antenna Array References 5 Machine Learning and Deep Reinforcement Learning in Wireless Networks and Communication Applications 5.1 Introduction 5.1.1 Deep Learning 5.1.2 Reinforcement Learning (RL) 5.1.3 Deep Reinforcement Learning (DRL) 5.1.4 From the RL to the DRL 5.1.5 Machine Learning (ML) 5.2 Applications Deep Reinforcement Learning Techniques 5.2.1 Application in Wireless Network 5.3 DRL Applications for Future-Generation Mobile Networks 5.3.1 Power Management and Power Control 5.4 Future Prediction of the Wireless Networks 5.5 Wireless Mobile Communications and the Future of the Indian Cellular Market 5.5.1 The Growth Factor of the Telecom Sector in India 5.5.2 Methodology Used in the Overall World 5.5.3 Market Size Especially in India 5.5.4 Growth Factor of Telecommunication in India 5.5.5 Major Market Players or Companies of Telecommunication in India 5.6 Summary References 6 Detection of Consumption of Alcohol Using Artificial Intelligence 6.1 Introduction 6.2 Ways to Detect Consumption of Alcohol 6.2.1 Breathalyzer 6.2.2 Identification Through Infrared Face Images 6.3 Methodology 6.3.1 Using IR Sensor Thermal Imaging Cameras 6.3.2 Using Breathalyzers 6.4 Summary References 7 Application of Machine Learning in Finger Vein Pattern Recognition 7.1 Introduction 7.1.1 Literature Survey 7.1.2 Problem Formulation 7.2 Methodology 7.2.1 Feature Withdrawal Techniques 7.3 Calculation and Verification of Accuracy 7.3.1 Machine Learning Algorithm 7.4 Results and Discussion 7.4.1 Accuracy and Calculation 7.5 Results Analysis 7.6 Summary References 8 Machine Learning Techniques for Anomaly Detection Application Domains 8.1 Introduction 8.2 Anomaly: What Is It? 8.2.1 Point Anomalies 8.2.2 Contextual Anomalies 8.2.3 Collective Anomalies 8.3 Aspects of Anomaly Detection and Challenges 8.3.1 Aspects of Anomaly Detection 8.3.2 Challenges Faced in Anomaly Detection 8.4 Application Domains 8.4.1 Medical and Public Health Anomaly Detection 8.4.2 Intrusion Detection 8.4.3 Industrial Damage Detection 8.4.4 Fault Detection in Mechanical Units 8.4.5 Structural Defect Detection 8.4.6 Fraud Detection 8.4.7 Sensor Networks 8.4.8 Image Processing 8.4.9 Text Data 8.4.10 Data Leakage Prevention 8.5 Anomaly Detection Techniques 8.5.1 Supervised Methods 8.5.2 UnSupervised Methods 8.6 Pros and Cons of Supervised and Unsupervised Techniques 8.7 Summary References 9 Application of AI & ML in 5G Communication 9.1 Introduction 9.2 Evolution from 1 to 5G 9.3 5th Generation Wireless Network Technology 9.4 5G Wireless Networks Security 9.5 Impact of AI/ML in 5G Wireless Network Technology 9.6 Role of AI on 5G Networks 9.6.1 Relevance of 5G to the Field of AI 9.7 5G Security: AI/ML Applications 9.8 Machine Learning for 5G Technology: A Case Study 9.8.1 Deep Convolutional Neural Networks Application to Detect Signal Modulation Types 9.8.2 Modulation Recognition 9.9 Modulation Classifier Consideration & Model Architecture 9.10 Results Analysis 9.11 Challenges and Future of 5G Wireless Technology 9.11.1 ML Servies for 5G Wireless Communications Include 9.11.2 Challenges for ML Application in 5G Technology 9.12 Summary References 10 Software Defined Network-Based Management Architecture for 5G Network 10.1 Introduction 10.2 Software Defined Network 10.2.1 SDN Architecture 10.2.2 SDN Management Architecture 10.2.3 How SDN Works 10.2.4 Benefits of SDN 10.3 5G Mobile Network 10.3.1 5G Architecture 10.3.2 Features of 5G Mobile Technology 10.3.3 How 5G Works 10.3.4 Challenges in 5G Network 10.4 SDN Implementation in 5G Mobile Network 10.4.1 SDN Management Architecture (Proposed Approach) 10.4.2 SDN Management Architecture Operation 10.4.3 SDN-Based Management for 5G Mobile Network 10.4.4 SDN Benefits for 5G 10.5 Conclusion and Future Work (Summary) References 11 Reversible Logic Based Single Layer Flip Flops and Shift Registers in QCA Framework for the Application of Nano-communication 11.1 Introduction 11.2 Preliminary Overview 11.2.1 Reversible Logic 11.2.2 QCA Background 11.3 QCA Layout of Reversible Fredkin Gate—A Novel Approach 11.3.1 Fault Characterization 11.3.2 Energy Dissipation Analysis of the Presented QCA Structure 11.3.3 QCA Layout of Fredkin Gate with 2D Clocking Scheme 11.4 Proposed Reversible QCA Circuits 11.4.1 QCA Based Reversible D Latch 11.4.2 QCA Based Reversible Master Slave D Flip Flop 11.4.3 QCA Based Reversible DET Flip Flop 11.4.4 Design of Proposed Reversible Shift Registers 11.5 Performance Analysis of Proposed Reversible QCA Circuits 11.6 Summary References 12 Machine Learning Technique for Few-Mode Fiber Design with Inverse Modelling for 5G and Beyond 12.1 Introduction 12.1.1 Optical Fiber in 5G and Beyond 12.1.2 Types of Fiber Used in 5G Networks 12.1.3 Role of Few-Mode Fiber in 5G Networks 12.1.4 State-Of-Art in the Design of Weakly-Coupled FMFs 12.1.5 Machine-Learning in FMF Design 12.2 Proposed FMF Structure 12.2.1 T-FMF Structure 12.2.2 Design Methodology 12.2.3 Machine Learning Model 12.3 Discussion of Proposed model with RMSE and MSE 12.4 Summary References 13 IoT for Landslides: Applications, Technologies and Challenges 13.1 Introduction 13.2 Related Concepts 13.2.1 Internet of Things 13.2.2 IoT Application for Landslide Prevention 13.3 IoT Technology for Landslide Studies 13.3.1 Overview 13.3.2 Sensor Network 13.3.3 Fibre Optic Sensing Technology 13.3.4 Cloud Computing Platform 13.4 Challenges with IoT-Based Monitoring System 13.5 Summary References 14 A Review: Dust Cleaning Approach of Solar Photovoltaic System Using IOT & ML 14.1 Introduction 14.2 Natural Cleaning System 14.3 Manual Cleaning System 14.4 Mechanical Cleaning Techniques 14.5 Sprinkle System 14.6 Cleaning Approach Based on IOT 14.7 Cleaning Approach Based on Machine Learning 14.8 Summary References 15 Prediction of Heart Disease Using Hybrid Machine Learning Technique 15.1 Introduction 15.2 Related Work 15.3 Methodology and Data Set Analysis 15.3.1 Experimental Procedures 15.4 Feature Engineering 15.4.1 Performance Analysis 15.5 Predictive Analysis 15.6 Conclusion References