دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بهینه سازی، تحقیق در عملیات. ویرایش: 1 نویسندگان: Vangelis Th. Paschos سری: ISTE ISBN (شابک) : 1848211481, 9781848211483 ناشر: Wiley-ISTE سال نشر: 2010 تعداد صفحات: 721 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Paradigms of Combinatorial Optimization: Problems and New Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پارادایم بهینه سازی ترکیبی: مشکلات و رویکردهای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
«پارادایمهای بهینهسازی ترکیبی» به دو بخش تقسیم
میشود:
• مسائل پارادایمایی، که چندین مسئله بهینهسازی ترکیبی معروف
مانند برش حداکثر، رنگآمیزی حداقل، رضایتپذیری بهینه tsp و
غیره را مدیریت میکند، که مطالعه آنها تا حد زیادی به توسعه،
مشروعیتسازی و ایجاد بهینهسازی ترکیبی به عنوان یکی از
فعالترین حوزههای علمی واقعی کمک کرده است. ;
• رویکردهای کلاسیک و جدید، که چندین رویکرد روششناختی را
ارائه میکند که با بهینهسازی ترکیبی بارور میشوند و بارور
میشوند، مانند: تقریب چند جملهای، محاسبات آنلاین، استحکام، و
غیره، و اخیراً، نظریه بازیهای الگوریتمی. p>
“Paradigms of Combinatorial Optimization” is divided in two
parts:
• Paradigmatic Problems, that handles several famous
combinatorial optimization problems as max cut, min coloring,
optimal satisfiability tsp, etc., the study of which has
largely contributed to both the development, the
legitimization and the establishment of the Combinatorial
Optimization as one of the most active actual scientific
domains;
• Classical and New Approaches, that presents the several
methodological approaches that fertilize and are fertilized
by Combinatorial optimization such as: Polynomial
Approximation, Online Computation, Robustness, etc., and,
more recently, Algorithmic Game Theory.
Cover Paradigms of Combinatorial Optimization - Problems and New Approaches ISBN 9781848211483 Table of Contents Preface PART I Paradigmatic Problems Chapter 1 Optimal Satisfibility 1.1. Introduction 1.2. Preliminaries o 1.2.1. Constraint satisfaction problems: decision and optimization versions o 1.2.2. Constraint types 1.3. Complexity of decision problems 1.4. Complexity and approximation of optimization problems o 1.4.1. Maximization problems o 1.4.2. Minimization problems 1.5. Particular instances of constraint satisfaction problems o 1.5.1. Planar instances o 1.5.2. Dense instances o 1.5.3. Instances with a bounded number of occurrences 1.6. Satisfability problems under global constraints 1.7. Conclusion 1.8. Bibliography Chapter 2 Scheduling Problems 2.1. Introduction 2.2. New techniques for approximation o 2.2.1. Linear programming and scheduling o 2.2.2. An approximation scheme for P||Cmax 2.3. Constraints and scheduling o 2.3.1. The monomachine constraint o 2.3.2. The cumulative constraint o 2.3.3. Energetic reasoning 2.4. Non-regular criteria o 2.4.1. PERT with convex costs o 2.4.2. Minimizing the early-tardy cost on one machine 2.5. Bibliography Chapter 3 Location Problems 3.1. Introduction o 3.1.1. Weber\'s problem o 3.1.2. A classifcation 3.2. Continuous problems o 3.2.1. Complete covering o 3.2.2. Maximal covering o 3.2.3. Empty covering o 3.2.4. Bicriteria models o 3.2.5. Covering with multiple resources 3.3. Discrete problems o 3.3.1. p-Center o 3.3.2. p-Dispersion o 3.3.3. p-Median o 3.3.4. Hub o 3.3.5. p-Maxisum 3.4. On-line problems 3.5. The quadratic assignment problem o 3.5.1. Defnitions and formulations of the problem o 3.5.2. Complexity o 3.5.3. Relaxations and lower bounds 3.6. Conclusion 3.7. Bibliography Chapter 4 MiniMax Algorithms and Games 4.1. Introduction 4.2. Games of no chance: the simple cases 4.3. The case of complex no chance games o 4.3.1. Approximative evaluation o 4.3.2. Horizon effect o 4.3.3. a- pruning 4.4. Quiescence search o 4.4.1. Other refnements of the MiniMax algorithm 4.5. Case of games using chance 4.6. Conclusion 4.7. Bibliography Chapter 5 Two-dimensional Bin Packing Problems 5.1. Introduction 5.2. Models o 5.2.1. ILP models for level packing 5.3. Upper bounds o 5.3.1. Strip packing o 5.3.2. Bin packing: two-phase heuristics o 5.3.3. Bin packing: one-phase level heuristics o 5.3.4. Bin packing: one-phase non-level heuristics o 5.3.5. Metaheuristics o 5.3.6. Approximation algorithms 5.4. Lower bounds o 5.4.1. Lower bounds for level packing 5.5. Exact algorithms 5.6. Acknowledgments 5.7. Bibliography Chapter 6 The Maximum Cut Problem 6.1. Introduction 6.2. Complexity and polynomial cases 6.3. Applications o 6.3.1. Spin glass models o 6.3.2. Unconstrained 0-1 quadratic programming o 6.3.3. The via minimization problem 6.4. The cut polytope o 6.4.1. Valid inequalities and separation o 6.4.2. Branch-and-cut algorithms o 6.4.3. The cut polyhedron 6.5. Semi-defnite programming (SDP) and the maximum cut problem o 6.5.1. Semi-defnite formulation of the MAX-CUT problem o 6.5.2. Quality of the semi-defnite formulation o 6.5.3. Existing works in the literature 6.6. The cut cone and applications o 6.6.1. The cut cone o 6.6.2. Relationship to the cut polytope o 6.6.3. The semi-metric cone o 6.6.4. Applications to the multifow problem 6.7. Approximation methods o 6.7.1. Methods with performance guarantees o 6.7.2. Methods with no guarantees 6.8. Related problems o 6.8.1. Unconstrained 0-1 quadratic programming o 6.8.2. The maximum even (odd) cut problem o 6.8.3. The equipartition problem o 6.8.4. Other problems 6.9. Conclusion 6.10. Bibliography Chapter 7 The Traveling Salesman Problem and its Variations 7.1. Introduction 7.2. Elementary properties and various subproblems o 7.2.1. Elementary properties o 7.2.2. Various subproblems 7.3. Exact solving algorithms o 7.3.1. A dynamic programming algorithm o 7.3.2. A branch-and-bound algorithm 7.4. Approximation algorithm for max TSP o 7.4.1. An algorithm based on 2-matching o 7.4.2. Algorithm mixing 2-matching and matching 7.5. Approximation algorithm for min TSP o 7.5.1. Algorithm based on the spanning tree and matching o 7.5.2. Local search algorithm 7.6. Constructive algorithms o 7.6.1. Nearest neighbor algorithm o 7.6.2. Nearest insertion algorithm 7.7. Conclusion 7.8. Bibliography Chapter 8 0-1 Knapsack Problems 8.1. General solution principle 8.2. Relaxation 8.3. Heuristic 8.4. Variable fxing 8.5. Dynamic programming o 8.5.1. General principle o 8.5.2. Managing feasible combinations of objects 8.6. Solution search by hybridization of branch-and-bound and dynamic o 8.6.1. Principle of hybridization o 8.6.2. Illustration of hybridization 8.7. Conclusion 8.8. Bibliography Chapter 9 Integer Quadratic Knapsack Problems 9.1. Introduction o 9.1.1. Problem formulation o 9.1.2. Signifcance of the problem 9.2. Solution methods o 9.2.1. The convex separable problem o 9.2.2. The non-convex separable problem o 9.2.3. The convex non-separable problem o 9.2.4. The non-convex non-separable problem 9.3. Numerical experiments o 9.3.1. The convex and separable integer quadratic knapsack problem o 9.3.2. The convex and separable integer quadratic multi-knapsack problem 9.4. Conclusion 9.5. Bibliography Chapter 10 Graph Coloring Problems 10.1. Basic notions of colorings 10.2. Complexity of coloring 10.3. Sequential methods of coloring 10.4. An exact coloring algorithm 10.5. Tabu search 10.6. Perfect graphs 10.7. Chromatic scheduling 10.8. Interval coloring 10.9. T -colorings 10.10. List colorings 10.11. Coloring with cardinality constraints 10.12. Other extensions 10.13. Edge coloring o 10.13.1. f -Coloring of edges o 10.13.2. [g, f]-Colorings of edges o 10.13.3. A model of hypergraph coloring 10.14. Conclusion 10.15. Bibliography PART II New Approaches Chapter 11 Polynomial Approximation 11.1. What is polynomial approximation? o 11.1.1. Effciently solving a diffcult problem o 11.1.2. Approximation measures 11.2. Some frst examples of analysis: constant approximation ratios o 11.2.1. An example of classical approximation: the metric traveling salesman o 11.2.2. Examples of the differential ratio case 11.3. Approximation schemes o 11.3.1. Non-complete schemes o 11.3.2. Complete approximation schemes - example of the Boolean knapsack 11.4. Analyses depending on the instance o 11.4.1. Set covering and classical ratios o 11.4.2. Set covering and differential ratios o 11.4.3. The maximum stable set problem 11.5. Conclusion: methods and issues of approximation o 11.5.1. The types of algorithms: a few great classics o 11.5.2. Approximation classes: structuring the class NPO o 11.5.3. Reductions in approximation o 11.5.4. Issues 11.6. Bibliography Chapter 12 Approximation Preserving Reductions 12.1. Introduction 12.2. Strict and continuous reductions o 12.2.1. Strict reductions o 12.2.2. Continuous reduction 12.3. AP-reduction and completeness in the classes NPO and APX o 12.3.1. Completeness in NPO o 12.3.2. Completeness in APX o 12.3.3. Using completeness to derive negative results 12.4. L-reduction and completeness in the classes Max-SNP and APX o 12.4.1. The L-reduction and the class Max-SNP o 12.4.2. Examples of L-reductions o 12.4.3. Completeness in Max-SNP and APX 12.5. Affne reduction 12.6. A few words on GAP-reduction 12.7. History and comments 12.8. Bibliography Chapter 13 Inapproximability of Combinatorial Optimization Problems 13.1. Introduction o 13.1.1. A brief historical overview o 13.1.2. Organization of this chapter o 13.1.3. Further reading 13.2. Some technical preliminaries 13.3. Probabilistically checkable proofs o 13.3.1. PCP and the approximability of Max SAT 13.4. Basic reductions o 13.4.1. Max 3SAT with bounded occurrences o 13.4.2. Vertex Cover and Independent Set o 13.4.3. Steiner tree problem o 13.4.4. More about Independent Set 13.5. Optimized reductions and PCP constructions o 13.5.1. PCPs optimized for Max SAT and Max CUT o 13.5.2. PCPs optimized for Independent Set o 13.5.3. The Unique Games Conjecture 13.6. An overview of known inapproximability results o 13.6.1. Lattice problems o 13.6.2. Decoding linear error-correcting codes o 13.6.3. The traveling salesman problem o 13.6.4. Coloring problems o 13.6.5. Covering problems o 13.6.6. Graph partitioning problems 13.7. Integrality gap results o 13.7.1. Convex relaxations of the Sparsest Cut problem o 13.7.2. Families of relaxations o 13.7.3. Integrality gaps versus Unique Games 13.8. Other topics o 13.8.1. Complexity classes of optimization problems o 13.8.2. Average-case complexity and approximability o 13.8.3. Witness length in PCP constructions o 13.8.4. Typical and unusual approximation factors 13.9. Conclusions 13.10. Prove optimal results for 2-query PCPs 13.11. Settle the Unique Games Conjecture 13.12. Prove a strong inapproximability result for Metric TSP 13.13. Acknowledgements 13.14. Bibliography Chapter 14 Local Search: Complexity and Approximation 14.1. Introduction 14.2. Formal framework 14.3. A few familiar optimization problems and their neighborhoods o 14.3.1. Graph partitioning problem o 14.3.2. The maximum cut problem o 14.3.3. The traveling salesman problem o 14.3.4. Clause satisfaction problems o 14.3.5. Stable confgurations in a Hopfeld-type neural network 14.4. The PLS class 14.5. Complexity of the standard local search algorithm 14.6. The quality of local optima 14.7. Approximation results o 14.7.1. The MAX k-SAT problem o 14.7.2. The MAX CUT problem o 14.7.3. Other problems on graphs o 14.7.4. The traveling salesman problem o 14.7.5. The quadratic assignment problem o 14.7.6. Classifcation problems o 14.7.7. Facility location problems 14.8. Conclusion and open problems 14.9. Bibliography Chapter 15 On-line Algorithms 15.1. Introduction 15.2. Some classical on-line problems o 15.2.1. List updating o 15.2.2. Paging o 15.2.3. The traveling salesman problem o 15.2.4. Load balancing 15.3. Competitive analysis of deterministic algorithms o 15.3.1. Competitive analysis of list updating o 15.3.2. Competitive analysis of paging algorithms o 15.3.3. Competitive analysis of on-line TSP o 15.3.4. Competitive analysis of on-line load balancing 15.4. Randomization o 15.4.1. Randomized paging o 15.4.2. Lower bounds: Yao\'s lemma and its application to paging algorithms 15.5. Extensions of competitive analysis o 15.5.1. Ad hoc techniques: the case of paging o 15.5.2. General techniques 15.6. Bibliography Chapter 16 Polynomial Approximation for Multicriteria Combinatorial Optimization Problems 16.1. Introduction 16.2. Presentation of multicriteria combinatorial problems o 16.2.1. Multicriteria combinatorial problems o 16.2.2. Optimality o 16.2.3. Complexity of multicriteria combinatorial problems 16.3. Polynomial approximation and performance guarantee o 16.3.1. Criteria weighting approach o 16.3.2. Simultaneous approach o 16.3.3. Budget approach o 16.3.4. Pareto curve approach 16.4. Bibliographical notes o 16.4.1. Presentation of multicriteria combinatorial problems o 16.4.2. Polynomial approximation with performance guarantees 16.5. Conclusion 16.6. Bibliography Chapter 17 An Introduction to Inverse Combinatorial Problems 17.1. Introduction 17.2. Defnitions and notation 17.3. Polynomial inverse problems and solution techniques o 17.3.1. The linear programming case o 17.3.2. Inverse maximum fow problem o 17.3.3. A class of polynomial inverse problems o 17.3.4. Avenues to explore: the example of the inverse bivalent variable maximum 17.4. Hard inverse problems o 17.4.1. Inverse NP-hard problems o 17.4.2. Facility location problem o 17.4.3. A partial inverse problem: the minimum capacity cut o 17.4.4. Maximum weight matching problem 17.5. Conclusion 17.6. Bibliography Chapter 18 Probabilistic Combinatorial Optimization 18.1. Motivations and applications 18.2. The issues: formalism and methodology 18.3. Problem complexity o 18.3.1. Membership of NP is not given o 18.3.2. Links between the deterministic and probabilistic frameworks from the 18.4. Solving problems o 18.4.1. Characterization of optimal solutions o 18.4.2. Polynomial solution of certain instances o 18.4.3. Effective solution 18.5. Approximation 18.6. Bibliography Chapter 19 Robust Shortest Path Problems 19.1. Introduction 19.2. Taking uncertainty into account: the various models o 19.2.1. The interval model o 19.2.2. The discrete scenario model 19.3. Measures of robustness o 19.3.1. Classical criterion derived from decision-making theory o 19.3.2. Methodology inspired by mathematical programming o 19.3.3. Methodology inspired by multicriteria analysis 19.4. Complexity and solution of robust shortest path problems in the interval o 19.4.1. With the worst-case criterion o 19.4.2. With the maximum regret criterion o 19.4.3. With the mathematical programming inspired approach o 19.4.4. With the multicriteria analysis inspired approach 19.5. Complexity and solution of robust shortest path problems in a discrete set o 19.5.1. With the worst-case criterion o 19.5.2. With the maximum regret criterion o 19.5.3. With the multicriteria analysis inspired approach 19.6. Conclusion 19.7. Bibliography Chapter 20 Algorithmic Games 20.1. Preliminaries o 20.1.1. Basic notions of games o 20.1.2. The classes of complexity covered in this chapter 20.2. Nash equilibria 20.3. Mixed extension of a game and Nash equilibria 20.4. Algorithmic problems o 20.4.1. Succinct description game o 20.4.2. Results on the complexity of computing a mixed equilibrium o 20.4.3. Counting the number of equilibria in a mixed strategy game 20.5. Potential games o 20.5.1. Defnitions o 20.5.2. Properties 20.6. Congestion games o 20.6.1. Rosenthal\'s model o 20.6.2. Complexity of congestion games (Rosenthal\'s model) o 20.6.3. Other models 20.7. Final notes 20.8. Bibliography List of Authors Index Summary of Volume 1 Concepts of Combinatorial Optimization Summary of Volume 3 Applications of Combinatorial Optimization