ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python

دانلود کتاب کتاب آشپزی پانداها: دستور العمل هایی برای محاسبات علمی، تجزیه و تحلیل سری های زمانی و تجسم داده ها با استفاده از پایتون

Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python

مشخصات کتاب

Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781784393878 
ناشر: Packt Publishing 
سال نشر: 2017 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Pandas Cookbook: Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب آشپزی پانداها: دستور العمل هایی برای محاسبات علمی، تجزیه و تحلیل سری های زمانی و تجسم داده ها با استفاده از پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب آشپزی پانداها: دستور العمل هایی برای محاسبات علمی، تجزیه و تحلیل سری های زمانی و تجسم داده ها با استفاده از پایتون

بیش از 95 دستور العمل عملی برای استفاده از قدرت پانداها برای محاسبات علمی کارآمد و تجزیه و تحلیل داده درباره این کتاب* از قدرت پانداها برای حل ساده ترین مشکلات محاسباتی علمی استفاده کنید* از ساختارهای داده سریع و قوی در پانداها برای به دست آوردن بینش مفید استفاده کنید. داده‌های شما* دستور العمل‌های کاربردی و آسان برای پیاده‌سازی راه‌حل‌های سریع برای مشکلات رایج در داده‌ها با استفاده از پانداها. . دستور العمل های موجود در این کتاب هم برای کاربران مبتدی و هم برای کاربران حرفه ای مناسب است و در صورت لزوم حاوی نکات، ترفندها و هشدارهای مفیدی است. درک کمی از پانداها مفید خواهد بود، اما اجباری نیست. آنچه خواهید آموخت* تسلط بر اصول اولیه پانداها برای شروع سریع کاوش هر مجموعه داده*ایزوله کردن هر زیرمجموعه ای از داده ها با انتخاب صحیح و پرس و جو داده ها* قبل از اعمال تجمیع، داده ها را به گروه های مستقل تقسیم کنید. و تبدیل به هر گروه * ساختار داده‌ها را به شکل مرتبی تغییر دهید تا تجزیه و تحلیل داده‌ها و تجسم آسان‌تر شود * مجموعه داده‌های آشفته در دنیای واقعی برای یادگیری ماشینی آماده کنید * داده‌ها را از منابع مختلف از طریق عملیات SQL مانند پانداها ترکیب و ادغام کنید * از عملکرد سری زمانی بی‌نظیر پانداها استفاده کنید* از طریق قلاب‌های مستقیم پانداها به Matplotlib و SeabornIn Detailاین کتاب، تجسم‌های زیبا و روشن‌فکرانه‌ای ایجاد کنید. برخی از دستور العمل ها بر دستیابی به درک عمیق تر از اصول اساسی، یا مقایسه و تضاد دو عملیات مشابه تمرکز دارند. دستور العمل های دیگر عمیقاً در یک مجموعه داده خاص فرو می روند و بینش های جدید و غیرمنتظره ای را در طول مسیر آشکار می کنند. کتابخانه پانداها بسیار بزرگ است و معمولاً کاربران مکرر از بسیاری از ویژگی های چشمگیرتر آن بی اطلاع هستند. مستندات رسمی پانداها، اگرچه کامل است، اما شامل مثال‌های مفید زیادی از نحوه کنار هم قرار دادن چندین فرمان مانند یکی در طول یک تجزیه و تحلیل واقعی نیست. این کتاب شما را راهنمایی می کند، گویی که از روی شانه یک متخصص، در موقعیت های عملی که به احتمال زیاد با آنها روبرو خواهید شد. تجربه وسیع آموزش پانداها در یک محیط حرفه ای برای ارائه توضیحات بسیار دقیق برای هر خط کد در همه دستور العمل ها. تمام توضیحات کد و مجموعه داده در نوت بوک های Jupyter وجود دارد، یک رابط عالی برای کاوش داده ها.


توضیحاتی درمورد کتاب به خارجی

Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysisAbout This Book* Use the power of pandas to solve most complex scientific computing problems with ease* Leverage fast, robust data structures in pandas to gain useful insights from your data* Practical, easy to implement recipes for quick solutions to common problems in data using pandasWho This Book Is ForThis book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory.What You Will Learn* Master the fundamentals of pandas to quickly begin exploring any dataset* Isolate any subset of data by properly selecting and querying the data* Split data into independent groups before applying aggregations and transformations to each group* Restructure data into tidy form to make data analysis and visualization easier* Prepare real-world messy datasets for machine learning* Combine and merge data from different sources through pandas SQL-like operations* Utilize pandas unparalleled time series functionality* Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and SeabornIn DetailThis book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way.The pandas library is massive, and it\'s common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter.Many advanced recipes combine several different features across the pandas library to generate results.Style and approachThe author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.



فهرست مطالب

Cover
Copyright
Credits
About the Author
Acknowledgements
About the Reviewers
www.PacktPub.com
Customer Feedback
Table of Contents
Preface
Chapter 1: Pandas Foundations
	Introduction
	Dissecting the anatomy of a DataFrame
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Accessing the main DataFrame components
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Understanding data types
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Selecting a single column of data as a Series
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Calling Series methods
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Working with operators on a Series
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Chaining Series methods together
		Getting ready
		How to do it...
		How it works...
		There's more...
	Making the index meaningful
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Renaming row and column names
		Getting ready
		How to do it...
		How it works...
		There's more...
	Creating and deleting columns
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Essential Chapter 2: DataFrame Operations
	Introduction
	Selecting multiple DataFrame columns
		Getting ready
		How to do it...
		How it works...
		There's more...
	Selecting columns with methods
		Getting ready
		How it works...
		How it works...
		There's more...
		See also
	Ordering column names sensibly
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Operating on the entire DataFrame
		Getting ready
		How to do it...
		How it works...
		There's more...
	Chaining DataFrame methods together
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Working with operators on a DataFrame
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Comparing missing values
		Getting ready
		How to do it...
		How it works...
		There's more...
	Transposing the direction of a DataFrame operation
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Determining college campus diversity
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 3: Beginning Data Analysis
	Introduction
	Developing a data analysis routine
		Getting ready
		How to do it...
		How it works...
		There's more...
			Data dictionaries
		See also
	Reducing memory by changing data types
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Selecting the smallest of the largest
		Getting ready
		How to do it...
		How it works...
		There's more...
	Selecting the largest of each group by sorting
		Getting ready
		How to do it...
		How it works...
		There's more...
	Replicating nlargest with sort_values
		Getting ready
		How to do it...
		How it works...
		There's more...
	Calculating a trailing stop order price
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 4: Selecting Subsets of Data
	Introduction
	Selecting Series data
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Selecting DataFrame rows
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Selecting DataFrame rows and columns simultaneously
		Getting ready
		How to do it...
		How it works...
		There's more...
	Selecting data with both integers and labels
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Speeding up scalar selection
		Getting ready
		How to do it...
		How it works...
		There's more...
	Slicing rows lazily
		Getting ready
		How to do it...
		How it works...
		There's more...
	Slicing lexicographically
		Getting ready
		How to do it...
		How it works...
		There's more...
Chapter 5: Boolean Indexing
	Introduction
	Calculating boolean statistics
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Constructing multiple boolean conditions
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Filtering with boolean indexing
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Replicating boolean indexing with index selection
		Getting ready
		How to do it...
		How it works...
		There's more...
	Selecting with unique and sorted indexes
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Gaining perspective on stock prices
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Translating SQL WHERE clauses
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Determining the normality of stock market returns
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Improving readability of boolean indexing with the query method
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Preserving Series with the where method
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Masking DataFrame rows
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Selecting with booleans, integer location, and labels
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 6: Index Alignment
	Introduction
	Examining the Index object
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Producing Cartesian products
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Exploding indexes
		Getting ready
		How to do it...
		How it works...
		There's more...
	Filling values with unequal indexes
		Getting ready
		How to do it...
		How it works...
		There's more...
	Appending columns from different DataFrames
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Highlighting the maximum value from each column
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Replicating idxmax with method chaining
		Getting ready
		How to do it...
		How it works...
		There's more...
	Finding the most common maximum
		Getting ready
		How to do it...
		How it works...
		There's more...
Chapter 7: Grouping for Aggregation, Filtration, and Transformation
	Introduction
	Defining an aggregation
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Grouping and aggregating with multiple columns and functions
		Getting ready
		How to do it...
		How it works...
		There's more...
	Removing the MultiIndex after grouping
		Getting ready
		How to do it...
		How it works...
		There's more...
	Customizing an aggregation function
		Getting ready
		How to do it...
		How it works...
		There's more...
	Customizing aggregating functions with *args and **kwargs
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Examining the groupby object
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Filtering for states with a minority majority
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Transforming through a weight loss bet
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Calculating weighted mean SAT scores per state with apply
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Grouping by continuous variables
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Counting the total number of flights between cities
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Finding the longest streak of on-time flights
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 8: Restructuring Data into a Tidy Form
	Introduction
	Tidying variable values as column names with stack
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Tidying variable values as column names with melt
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Stacking multiple groups of variables simultaneously
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Inverting stacked data
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Unstacking after a groupby aggregation
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Replicating pivot_table with a groupby aggregation
		Getting ready
		How to do it...
		How it works...
		There's more...
	Renaming axis levels for easy reshaping
		Getting ready
		How to do it...
		How it works...
		There's more...
	Tidying when multiple variables are stored as column names
		Getting ready...
		How to do it...
		How it works...
		There's more...
		See also
	Tidying when multiple variables are stored as column values
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Tidying when two or more values are stored in the same cell
		Getting ready...
		How to do it..
		How it works...
		There's more...
	Tidying when variables are stored in column names and values
		Getting ready
		How to do it...
		How it works...
		There's more...
	Tidying when multiple observational units are stored in the same table
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 9: Combining Pandas Objects
	Introduction
	Appending new rows to DataFrames
		Getting ready
		How to do it...
		How it works...
		There's more...
	Concatenating multiple DataFrames together
		Getting ready
		How to do it...
		How it works...
		There's more...
	Comparing President Trump's and Obama's approval ratings
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Understanding the differences between concat, join, and merge
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Connecting to SQL databases
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 10: Time Series Analysis
	Introduction
	Understanding the difference between Python and pandas date tools
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Slicing time series intelligently
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Using methods that only work with a DatetimeIndex
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Counting the number of weekly crimes
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Aggregating weekly crime and traffic accidents separately
		Getting ready
		How to do it...
		How it works...
		There's more...
	Measuring crime by weekday and year
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Grouping with anonymous functions with a DatetimeIndex
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Grouping by a Timestamp and another column
		Getting ready
		How to do it...
		How it works...
		There's more...
	Finding the last time crime was 20% lower with merge_asof
		Getting ready
		How to do it...
		How it works...
		There's more...
Chapter 11: Visualization with Matplotlib, Pandas, and Seaborn
	Introduction
	Getting started with matplotlib
		Getting ready
			Object-oriented guide to matplotlib
		How to do it...
		How it works...
		There's more...
		See also
	Visualizing data with matplotlib
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Plotting basics with pandas
		Getting ready
		How to do it..
		How it works...
		There's more...
		See also
	Visualizing the flights dataset
		Getting ready
		How to do it...
		How it works...
		See also
	Stacking area charts to discover emerging trends
		Getting ready
		How to do it...
		How it works...
		There's more...
	Understanding the differences between seaborn and pandas
		Getting ready
		How to do it...
		How it works...
		See also
	Doing multivariate analysis with seaborn Grids
		Getting ready
		How to do it...
		How it works...
		There's more...
	Uncovering Simpson's paradox in the diamonds dataset with seaborn
		How to do it...
		How it works...
		There's more...
Index




نظرات کاربران