دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Øyvind Hammer. David A. T. Harper
سری:
ISBN (شابک) : 1119933935, 9781119933939
ناشر: Wiley
سال نشر: 2024
تعداد صفحات: 400
[391]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب Paleontological Data Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های دیرینه شناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Preface Acknowledgements Chapter 1 Introduction 1.1 The nature of paleontological data 1.1.1 Univariate measurements 1.1.2 Bivariate measurements 1.1.3 Multivariate morphometric measurements 1.1.4 Character matrices for phylogenetic analysis 1.1.5 Paleoecology and paleobiogeography – taxa in samples 1.1.6 Time series 1.1.7 Biostratigraphic data 1.2 Advantages and pitfalls of paleontological data analysis 1.2.1 Data analysis for the sake of it 1.2.2 The Texas sharpshooter 1.2.3 Explorative method or hypothesis testing? 1.2.4 Incomplete data 1.2.5 Statistical assumptions 1.2.6 Statistical and biological significance 1.2.7 Circularity 1.3 Software References Chapter 2 Statistical concepts 2.1 The population and the sample 2.2 The frequency distribution of the population 2.3 The normal distribution 2.4 Cumulative probability 2.5 The statistical sample, estimation of distribution parameters 2.6 Null hypothesis significance testing 2.6.1 Type I and type II errors 2.6.2 Power 2.6.3 Robustness 2.6.4 Effect size 2.6.5 NHST misunderstandings 2.7 Bayesian inference 2.7.1 Bayes’ theorem 2.7.2 Markov Chain Monte Carlo 2.7.3 What is the point? 2.7.4 Bayes factors 2.8 Exploratory data analysis References Chapter 3 Introduction to data visualization 3.1 Graphic design principles 3.1.1 Vector graphics 3.1.2 Fonts 3.1.3 Colors 3.1.4 Fills 3.2 Line charts 3.3 Scatter plots 3.4 Histograms 3.5 Bar chart, box, and violin plots 3.6 Normal probability plot 3.7 Pie charts 3.8 Ternary plots 3.9 Heat maps, 3D plots, and Geographic Information System 3.10 Plotting with R and Python References Chapter 4 Univariate and bivariate statistical methods 4.1 Parameter estimation and confidence intervals 4.1.1 Bootstrapping 4.1.2 Credible intervals 4.2 Testing for distribution 4.2.1 Shapiro–Wilk test for normal distribution 4.3 Two-sample tests 4.3.1 Student’s t test for the equality of means 4.3.2 F test for the equality of variances 4.3.3 Mann–Whitney U test for equality of position 4.3.4 Kolmogorov–Smirnov test for equality of distribution 4.3.5 Permutation tests 4.4 Multiple-sample tests 4.4.1 One-way ANOVA 4.4.2 Kruskal–Wallis test 4.5 Correlation 4.5.1 Linear correlation 4.5.2 Non-parametric correlation 4.6 Bivariate linear regression 4.6.1 Ordinary least-squares linear regression 4.6.2 Reduced major axis regression 4.7 Generalized linear models 4.7.1 GLM regression of counts 4.7.2 GLM regression of percentages or proportions 4.7.3 GLM regression of binary data (logistic regression) 4.8 Polynomial and nonlinear regression 4.8.1 Akaike information criterion 4.9 Mixture analysis 4.10 Counts and contingency tables References Chapter 5 Introduction to multivariate data analysis 5.1 Multivariate distributions 5.2 Parametric multivariate tests – Hotelling’s T2 5.3 Nonparametric multivariate tests – permutation test 5.4 Hierarchical cluster analysis 5.5 K-means and k-medoids cluster analysis References Chapter 6 Morphometrics 6.1 The allometric equation 6.2 Principal components analysis 6.2.1 Transformation and normalization 6.2.2 Relative importance of principal components 6.2.3 Algorithms for PCA 6.2.4 PCA is not hypothesis testing 6.2.5 Factor analysis 6.3 Multivariate allometry 6.4 Linear discriminant analysis 6.4.1 Discriminant analysis for more than two groups 6.5 Multivariate analysis of variance 6.6 Fourier shape analysis in polar coordinates 6.7 Elliptic Fourier analysis 6.8 Hangle Fourier analysis 6.9 Eigenshape analysis 6.10 Landmarks and size measures 6.10.1 Sliding landmarks 6.10.2 Size from landmarks 6.10.3 Landmark registration and shape coordinates 6.11 Procrustes fitting 6.12 PCA of landmark data 6.13 Thin-plate spline deformations 6.14 Principal and partial warps 6.14.1 The affine (uniform) component 6.14.2 Partial warp scores as shape coordinates 6.15 Relative warps 6.16 Regression of warp scores 6.17 Common allometric component analysis 6.18 Landmarks in 3D 6.19 Disparity measures 6.19.1 Morphometric disparity measures 6.19.2 Disparity measures from discrete characters 6.19.3 Sampling effects and rarefaction 6.19.4 Morphospaces 6.20 Morphogroup identification with machine learning 6.20.1 K-nearest-neighbor classification 6.20.2 Naïve Bayes 6.20.3 Decision trees and random forests 6.20.4 Neural networks 6.20.5 Image classification and convolutional neural networks 6.21 Case study: the ontogeny of a Silurian trilobite 6.21.1 Size 6.21.2 Distance measurements and allometry 6.21.3 Procrustes fitting of landmarks 6.21.4 Common allometric component analysis References Chapter 7 Directional and spatial data analysis 7.1 Analysis of directions and orientations in 2D 7.1.1 Plotting circular data 7.1.2 Testing for preferred direction 7.2 Analysis of directions and orientations in 3D 7.3 Spatial point pattern analysis 7.3.1 Nearest-neighbor analysis 7.3.2 Ripley’s K analysis 7.3.3 Correlation length analysis References Chapter 8 Analysis of tomographic and 3D-scan data 8.1 The technology of x-ray tomography 8.2 Processing of volume data 8.2.1 Volumes and surface meshes 8.2.2 Segmentation 8.2.3 Landmarks from CT data 8.2.4 Analysis of volume data 8.3 Functional morphology with 3D data 8.3.1 Structural analysis – stresses and strains 8.3.2 Computational fluid dynamics References Chapter 9 Estimating paleobiodiversity 9.1 Species richness estimation 9.1.1 Species richness estimation from single-sample abundance data 9.1.2 Species richness estimation from multiple-sample presence-absence data 9.2 Rarefaction and related methods 9.2.1 Classical rarefaction 9.2.2 Unconditional variance rarefaction 9.2.3 Shareholder quorum subsampling 9.2.4 Sample rarefaction 9.3 Diversity curves, origination, and extinction rates 9.4 Abundance-based biodiversity indices 9.4.1 Confidence intervals for abundance-based diversity indices 9.4.2 Rarefaction of abundance-based diversity indices 9.5 Taxonomic distinctness 9.6 Comparison of diversity indices 9.7 Abundance models References Chapter 10 Paleoecology and paleobiogeography 10.1 Paleobiogeography 10.2 Paleoecology 10.3 Association similarity indices for presence-absence data 10.4 Association similarity indices for abundance data 10.5 ANOSIM and PerMANOVA 10.6 Principal coordinates analysis 10.6.1 Metric distance measures and the triangle inequality 10.7 Non-metric multidimensional scaling 10.8 Correspondence analysis 10.9 Detrended correspondence analysis 10.10 Seriation 10.11 Nonlinear dimensionality reduction 10.11.1 ISOMAP 10.11.2 Spectral embedding 10.11.3 UMAP 10.12 Canonical correspondence analysis 10.13 Indicator species 10.14 Network analysis 10.15 Size-frequency and survivorship curves 10.16 Case study: Devonian paleobiogeography References Chapter 11 Calibration – estimating paleoenvironments 11.1 Modern analog technique 11.2 Weighted averaging 11.3 Weighted averaging partial least squares 11.4 Which calibration method? 11.5 Case study: Late Holocene temperature inferred from chironomids References Chapter 12 Time series analysis 12.1 Spectral analysis 12.1.1 Discrete Fourier transform 12.1.2 Spectral analysis with the REDFIT procedure 12.1.3 Spectral analysis with the multitaper method 12.1.4 Evolutive spectral analysis 12.2 Wavelet analysis 12.3 Autocorrelation 12.4 Cross-correlation 12.5 Runs test 12.6 Time Series Trends and Regression 12.6.1 Mann–Kendall trend test 12.6.2 Regression in the presence of autocorrelation 12.7 Smoothing and filtering 12.7.1 Moving average 12.7.2 Exponential moving average 12.7.3 Moving median 12.7.4 Non-local means 12.7.5 FIR filtering 12.7.6 Fitting to models References Chapter 13 Quantitative biostratigraphy 13.1 Zonation of a single section 13.1.1 Stratigraphically constrained clustering 13.2 Confidence intervals on stratigraphic ranges 13.2.1 Parametric confidence intervals on stratigraphic ranges 13.2.2 Non-parametric confidence intervals on stratigraphic ranges 13.3 Regional and global biostratigraphic correlation 13.3.1 Graphic correlation 13.3.2 Constrained optimization 13.3.3 Ranking and scaling 13.3.4 Normality testing and variance analysis 13.3.5 Correlation (CASC) 13.3.6 Unitary Associations 13.3.7 Biostratigraphy by ordination 13.3.8 What is the best method for biostratigraphic correlation? 13.4 Age models 13.4.1 Simple interpolation 13.4.2 Simple regression and smoothing 13.4.3 Classical age models with Monte Carlo simulation 13.4.4 Bayesian age modeling References Chapter 14 Phylogenetic analysis 14.1 A dictionary of cladistics 14.2 Parsimony analysis 14.3 Characters 14.4 Algorithms for Parsimony Analysis 14.4.1 Exhaustive search 14.4.2 Branch and bound 14.4.3 Heuristic algorithms 14.5 Character state reconstruction 14.6 Evaluation of characters and trees 14.6.1 Consensus tree 14.6.2 Consistency index 14.6.3 Retention Index 14.6.4 Bootstrapping 14.6.5 Bremer support 14.6.6 Stratigraphic congruency indices 14.7 Case study: the systematics of heterosporous ferns 14.7.1 Parsimony analysis 14.7.2 Comparison with the fossil record 14.8 Other methods for phylogenetic analysis 14.8.1 Phylogenetic analysis with maximum likelihood 14.8.2 Bayesian phylogenetic analysis 14.8.3 Phylogenetic analysis with distance methods 14.9 Phylogenetic Comparative Methods 14.9.1 Phylogenetic independent contrasts 14.9.2 Phylogenetic generalized least squares 14.9.3 PGLS and phylogenetic signal References Index EULA