دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Eberhard Zeidler سری: ISBN (شابک) : 9780198507635, 0198507631 ناشر: OUP سال نشر: 2004 تعداد صفحات: 1308 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Oxford User's Guide to Mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای کاربر آکسفورد برای ریاضیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای کاربر آکسفورد برای ریاضیات در علوم و مهندسی نشان دهنده یک کتاب راهنمای جامع در مورد ریاضیات است. طیف گسترده ای از ریاضیات از جمله تجزیه و تحلیل، جبر، هندسه، مبانی ریاضیات، حساب تغییرات و بهینه سازی، نظریه احتمالات و آمار ریاضی، ریاضیات عددی و محاسبات علمی، و تاریخ ریاضیات را پوشش می دهد. این با جداول متعددی در مورد سری های بی نهایت، توابع ویژه، انتگرال ها، تبدیل های انتگرال، آمار ریاضی و ثابت های اساسی در فیزیک تکمیل می شود. این کتاب تصویر مدرن گستردهای از ریاضیات را ارائه میدهد که از مطالب پایه تا موضوعات پیشرفتهتر شروع میشود. بر روابط بین شاخه های مختلف ریاضیات و کاربردهای ریاضیات در مهندسی و علوم طبیعی تأکید می کند. این کتاب به دانشآموزان رشتههای مهندسی، ریاضیات، علوم کامپیوتر، علوم طبیعی، معلمان دبیرستان و همچنین طیف گستردهای از پزشکان در صنعت و محققان حرفهای میپردازد. جدولی جامع در انتهای کتاب راهنما، تاریخ ریاضیات را در تاریخ فرهنگ بشری گنجانده است. کتابشناسی مجموعه ای جامع از ادبیات استاندارد معاصر در زمینه های اصلی ریاضیات را نشان می دهد.
The Oxford User's Guide to Mathematics in Science and Engineering represents a comprehensive handbook on mathematics. It covers a broad spectrum of mathematics including analysis, algebra, geometry, foundations of mathematics, calculus of variations and optimization, theory of probability and mathematical statistics, numerical mathematics and scientific computing, and history of mathematics. This is supplemented by numerous tables on infinite series, special functions, integrals, integral transformations, mathematical statistics, and fundamental constants in physics. The book offers a broad modern picture of mathematics starting from basic material up to more advanced topics. It emphasizes the relations between the different branches of mathematics and the applications of mathematics in engineering and the natural sciences. The book addresses students in engineering, mathematics, computer science, natural sciences, high-school teachers, as well as a broad spectrum of practitioners in industry and professional researchers. A comprehensive table at the end of the handbook embeds the history of mathematics into the history of human culture. The bibliography represents a comprehensive collection of the contemporary standard literature in the main fields of mathematics.
Contents......Page file5_0011.djvu
Introduction......Page file5_0023.djvu
0.1.1 Mathematical constants......Page file5_0025.djvu
0.1.2 Measuring angles......Page file5_0027.djvu
0.1.3 Area and circumference of plane figures......Page file5_0029.djvu
0.1.4 Volume and surface area of solids......Page file5_0032.djvu
0.1.5 Volumes and surface areas of regular polyhedra......Page file5_0035.djvu
0.1.6 Volume and surface area of n-dimensional balls......Page file5_0037.djvu
0.1.7 Basic formulas for analytic geometry in the plane......Page file5_0038.djvu
0.1.8 Basic formulas of analytic geometry of space......Page file5_0047.djvu
0.1.9 Powers, roots and logarithms......Page file5_0048.djvu
0.1.10 Elementary algebraic formulas......Page file5_0050.djvu
0.1.11 Important inequalities......Page file5_0058.djvu
0.1.12 Application to the motion of the planets......Page file5_0063.djvu
0.2 Elementary functions and graphs......Page file5_0067.djvu
0.2.1 Transformation of functions......Page file5_0069.djvu
0.2.2 Linear functions......Page file5_0070.djvu
0.2.3 Quadratic functions......Page file5_0071.djvu
0.2.5 The Euler e-function......Page file5_0072.djvu
0.2.6 The logarithm......Page file5_0074.djvu
0.2.8 Sine and cosine......Page file5_0075.djvu
0.2.9 Tangent and cotangent......Page file5_0081.djvu
0.2.10 The hyperbolic functions sinh x and cosh x......Page file5_0085.djvu
0.2.11 The hyperbolic functions tanh x and coth x......Page file5_0086.djvu
0.2.12 The inverse trigonometric functions......Page file5_0088.djvu
0.2.13 The inverse hyperbolic functions......Page file5_0090.djvu
0.2.14 Polynomials......Page file5_0092.djvu
0.2.15 Rational functions......Page file5_0093.djvu
0.3 Mathematics and computers - a revolution in mathematics......Page file5_0096.djvu
0.4.1 Empirical data for sequences of measurements (trials)......Page file5_0097.djvu
0.4.2 The theoretical distribution function......Page file5_0099.djvu
0.4.3 Checking for a normal distribution......Page file5_0101.djvu
0.4.5 The statistical comparison of two sequences of measurements......Page file5_0102.djvu
0.4.6 Tables of mathematical statistics......Page file5_0105.djvu
0.5.1 The gamma functions Γ(x) and 1/Γ(x)......Page file5_0120.djvu
0.5.2 Cylinder functions (also known as Bessel functions)......Page file5_0121.djvu
0.5.3 Spherical functions (Legendre polynomials)......Page file5_0125.djvu
0.5.4 Elliptic integrals......Page file5_0126.djvu
0.5.5 Integral trigonometric and exponential functions......Page file5_0128.djvu
0.5.7 The function [Equation Omitted]......Page file5_0130.djvu
0.5.8 Changing from degrees to radians......Page file5_0131.djvu
0.6 Table of prime numbers ≤ 4000......Page file5_0132.djvu
0.7.1 Special series......Page file5_0133.djvu
0.7.2 Power series......Page file5_0136.djvu
0.7.3 Asymptotic series......Page file5_0146.djvu
0.7.4 Fourier series......Page file5_0149.djvu
0.7.5 Infinite products......Page file5_0154.djvu
0.8.1 Differentiation of elementary functions......Page file5_0155.djvu
0.8.2 Rules for differentiation of functions of one variable......Page file5_0157.djvu
0.8.3 Rules for differentiating functions of several variables......Page file5_0158.djvu
0.9.1 Integration of elementary functions......Page file5_0160.djvu
0.9.2 Rules for integration......Page file5_0162.djvu
0.9.3 Integration of rational functions......Page file5_0166.djvu
0.9.4 Important substitutions......Page file5_0167.djvu
0.9.5 Tables of indefinite integrals......Page file5_0171.djvu
0.9.6 Tables of definite integrals......Page file5_0208.djvu
0.10.1 Fourier transformation......Page file5_0214.djvu
0.10.2 Laplace transformation......Page file5_0227.djvu
1. Analysis......Page file5_0243.djvu
1.1.1 Real numbers......Page file5_0244.djvu
1.1.2 Complex numbers......Page file5_0250.djvu
1.1.3 Applications to oscillations......Page file5_0255.djvu
1.1.4 Calculations with equalities......Page file5_0256.djvu
1.1.5 Calculations with inequalities......Page file5_0258.djvu
1.2.1 Basic ideas......Page file5_0260.djvu
1.2.2 The Hilbert axioms for the real numbers......Page file5_0261.djvu
1.2.3 Sequences of real numbers......Page file5_0264.djvu
1.2.4 Criteria for convergence of sequences......Page file5_0267.djvu
1.3.1 Functions of a real variable......Page file5_0271.djvu
1.3.2 Metric spaces and point sets......Page file5_0276.djvu
1.3.3 Functions of several variables......Page file5_0281.djvu
1.4.1 The derivative......Page file5_0284.djvu
1.4.2 The chain rule......Page file5_0286.djvu
1.4.3 Increasing and decreasing functions......Page file5_0287.djvu
1.4.4 Inverse functions......Page file5_0288.djvu
1.4.5 Taylor\'s theorem and the local behavior of functions......Page file5_0290.djvu
1.4.6 Complex valued functions......Page file5_0299.djvu
1.5.1 Partial derivatives......Page file5_0300.djvu
1.5.2 The Fréchet derivative......Page file5_0301.djvu
1.5.3 The chain rule......Page file5_0304.djvu
1.5.4 Applications to the transformation of differential operators......Page file5_0307.djvu
1.5.5 Application to the dependency of functions......Page file5_0309.djvu
1.5.6 The theorem on implicit functions......Page file5_0310.djvu
1.5.7 Inverse mappings......Page file5_0312.djvu
1.5.8 The nth variation and Taylor\'s theorem......Page file5_0314.djvu
1.5.9 Applications to estimation of errors......Page file5_0315.djvu
1.5.10 The Fréchet differential......Page file5_0317.djvu
1.6 Integration of functions of a real variable......Page file5_0328.djvu
1.6.1 Basic ideas......Page file5_0329.djvu
1.6.2 Existence of the integral......Page file5_0332.djvu
1.6.3 The fundamental theorem of calculus......Page file5_0334.djvu
1.6.4 Integration by parts......Page file5_0335.djvu
1.6.5 Substitution......Page file5_0336.djvu
1.6.6 Integration on unbounded intervals......Page file5_0339.djvu
1.6.8 The Cauchy principal value......Page file5_0340.djvu
1.6.9 Application to arc length......Page file5_0341.djvu
1.6.10 A standard argument from physics......Page file5_0342.djvu
1.7.1 Basic ideas......Page file5_0343.djvu
1.7.2 Existence of the integral......Page file5_0351.djvu
1.7.3 Calculations with integrals......Page file5_0354.djvu
1.7.4 The principle of Cavalieri (iterated integration)......Page file5_0355.djvu
1.7.6 The fundamental theorem of calculus (theorem of Gauss-Stokes)......Page file5_0357.djvu
1.7.7 The Riemannian surface measure......Page file5_0363.djvu
1.7.8 Integration by parts......Page file5_0365.djvu
1.7.9 Curvilinear coordinates......Page file5_0366.djvu
1.7.10 Applications to the center of mass and center of inertia......Page file5_0370.djvu
1.7.11 Integrals depending on parameters......Page file5_0372.djvu
1.8.1 Linear combinations of vectors......Page file5_0373.djvu
1.8.2 Coordinate systems......Page file5_0375.djvu
1.8.3 Multiplication of vectors......Page file5_0376.djvu
1.9.1 Velocity and acceleration......Page file5_0379.djvu
1.9.2 Gradient, divergence and curl......Page file5_0381.djvu
1.9.3 Applications to deformations......Page file5_0383.djvu
1.9.4 Calculus with the nabla operator......Page file5_0385.djvu
1.9.5 Work, potential energy and integral curves......Page file5_0388.djvu
1.9.6 Applications to conservation laws in mechanics......Page file5_0390.djvu
1.9.7 Flows, conservation laws and the integral theorem of Gauss......Page file5_0392.djvu
1.9.8 The integral theorem of Stokes......Page file5_0394.djvu
1.9.9 Main theorem of vector analysis......Page file5_0395.djvu
1.9.10 Application to Maxwell\'s equations in electromagnetism......Page file5_0396.djvu
1.10 Infinite series......Page file5_0398.djvu
1.10.1 Criteria for convergence......Page file4.djvu
1.10.2 Calculations with infinite series......Page file4_0003.djvu
1.10.3 Power series......Page file4_0005.djvu
1.10.4 Fourier series......Page file4_0008.djvu
1.10.6 Infinite products:......Page file4_0012.djvu
1.11 Integral transformations......Page file4_0014.djvu
1.11.1 The Laplace transformation......Page file4_0016.djvu
1.11.2 The Fourier transformation......Page file4_0021.djvu
1.11.3 The Z-transformation......Page file4_0026.djvu
1.12.1 Introductory examples......Page file4_0030.djvu
1.12.2 Basic notions......Page file4_0038.djvu
1.12.3 The classification of differential equations......Page file4_0047.djvu
1.12.4 Elementary methods of solution......Page file4_0057.djvu
1.12.5 Applications......Page file4_0073.djvu
1.12.6 Systems of linear differential equations and the propagator......Page file4_0077.djvu
1.12.7 Stability......Page file4_0080.djvu
1.12.8 Boundary value problems and Green\'s functions......Page file4_0082.djvu
1.12.9 General theory......Page file4_0087.djvu
1.13 Partial differential equations......Page file4_0091.djvu
1.13.1 Equations of first order of mathematical physics......Page file4_0092.djvu
1.13.2 Equations of mathematical physics of the second order......Page file4_0119.djvu
1.13.3 The role of characteristics......Page file4_0134.djvu
1.13.4 General principles for uniqueness......Page file4_0144.djvu
1.13.5 General existence results......Page file4_0145.djvu
1.14 Complex function theory......Page file4_0155.djvu
1.14.1 Basic ideas......Page file4_0156.djvu
1.14.2 Sequences of complex numbers......Page file4_0157.djvu
1.14.3 Differentiation......Page file4_0158.djvu
1.14.4 Integration......Page file4_0160.djvu
1.14.5 The language of differential forms......Page file4_0164.djvu
1.14.6 Representations of functions......Page file4_0166.djvu
1.14.7 The calculus of residues and the calculation of integrals......Page file4_0172.djvu
1.14.8 The mapping degree......Page file4_0174.djvu
1.14.9 Applications to the fundamental theorem of algebra......Page file4_0175.djvu
1.14.10 Biholomorphic maps and the Riemann mapping theorem......Page file4_0177.djvu
1.14.11 Examples of conformal maps......Page file4_0178.djvu
1.14.12 Applications to harmonic functions......Page file4_0186.djvu
1.14.13 Applications to hydrodynamics......Page file4_0189.djvu
1.14.14 Applications in electrostatics and magnetostatics......Page file4_0191.djvu
1.14.15 Analytic continuation and the identity principle......Page file4_0192.djvu
1.14.16 Applications to the Euler gamma function......Page file4_0195.djvu
1.14.17 Elliptic functions and elliptic integrals......Page file4_0197.djvu
1.14.18 Modular forms and the inversion problem for the ℘-function......Page file4_0204.djvu
1.14.19 Elliptic integrals......Page file4_0207.djvu
1.14.20 Singular differential equations......Page file4_0215.djvu
1.14.22 Application to the Bessel differential equation......Page file4_0216.djvu
1.14.23 Functions of several complex variables......Page file4_0218.djvu
2.1.1 Combinatorics......Page file4_0222.djvu
2.1.2 Determinants......Page file4_0225.djvu
2.1.3 Matrices......Page file4_0228.djvu
2.1.4 Systems of linear equations......Page file4_0233.djvu
2.1.5 Calculations with polynomials......Page file4_0238.djvu
2.1.6 The fundamental theorem of algebra according to Gauss......Page file4_0241.djvu
2.1.7 Partial fraction decomposition......Page file4_0247.djvu
2.2.1 The spectrum of a matrix......Page file4_0249.djvu
2.2.2 Normal forms for matrices......Page file4_0251.djvu
2.2.3 Matrix functions......Page file4_0258.djvu
2.3.1 Basic ideas......Page file4_0260.djvu
2.3.2 Linear spaces......Page file4_0261.djvu
2.3.3 Linear operators......Page file4_0264.djvu
2.3.4 Calculating with linear spaces......Page file4_0268.djvu
2.3.5 Duality......Page file4_0271.djvu
2.4.1 Algebras......Page file4_0273.djvu
2.4.2 Calculations with multilinear forms......Page file4_0274.djvu
2.4.3 Universal products......Page file4_0280.djvu
2.4.4 Lie algebras......Page file4_0284.djvu
2.4.5 Superalgebras......Page file4_0285.djvu
2.5.1 Groups......Page file4_0286.djvu
2.5.2 Rings......Page file4_0292.djvu
2.5.3 Fields......Page file4_0295.djvu
2.6.2 The main theorem of Galois theory......Page file4_0298.djvu
2.6.3 The generalized fundamental theorem of algebra......Page file4_0301.djvu
2.6.4 Classification of field extensions......Page file4_0302.djvu
2.6.5 The main theorem on equations which can be solved by radicals......Page file4_0303.djvu
2.6.6 Constructions with a ruler and a compass......Page file4_0305.djvu
2.7 Number theory......Page file4_0308.djvu
2.7.1 Basic ideas......Page file4_0309.djvu
2.7.2 The Euclidean algorithm......Page file4_0310.djvu
2.7.3 The distribution of prime numbers......Page file4_0313.djvu
2.7.4 Additive decompositions......Page file4_0319.djvu
2.7.5 The approximation of irrational numbers by rational numbers and continued fractions......Page file4_0322.djvu
2.7.6 Transcendental numbers......Page file4_0328.djvu
2.7.7 Applications to the number π......Page file4_0331.djvu
2.7.8 Gaussian congruences......Page file4_0335.djvu
2.7.9 Minkowski\'s geometry of numbers......Page file4_0338.djvu
2.7.10 The fundamental local-global principle in number theory......Page file4_0339.djvu
2.7.11 Ideals and the theory of divisors......Page file4_0340.djvu
2.7.12 Applications to quadratic number fields......Page file4_0342.djvu
2.7.14 Hilbert\'s class field theory for general number fields......Page file4_0345.djvu
3.1 The basic idea of geometry epitomized by Klein\'s Erlanger Program......Page file4_0348.djvu
3.2.1 Plane trigonometry......Page file4_0349.djvu
3.2.2 Applications to geodesy......Page file4_0356.djvu
3.2.3 Spherical geometry......Page file4_0359.djvu
3.2.4 Applications to sea and air travel......Page file4_0364.djvu
3.2.5 The Hilbert axioms of geometry......Page file4_0365.djvu
3.2.6 The parallel axiom of Euclid......Page file4_0368.djvu
3.2.7 The non-Euclidean elliptic geometry......Page file4_0369.djvu
3.2.8 The non-Euclidean hyperbolic geometry......Page file4_0370.djvu
3.3 Applications of vector algebra in analytic geometry......Page file4_0372.djvu
3.3.1 Lines in the plane......Page file4_0373.djvu
3.3.2 Lines and planes in space......Page file4_0374.djvu
3.3.3 Volumes......Page file4_0375.djvu
3.4.1 The group of Euclidean motions......Page file4_0376.djvu
3.4.2 Conic sections......Page file4_0377.djvu
3.4.3 Quadratic surfaces......Page file4_0378.djvu
3.5.1 Basic ideas......Page file4_0383.djvu
3.5.2 Projective maps......Page file4_0385.djvu
3.5.3 The n-dimensional real projective space......Page file4_0386.djvu
3.5.5 The classification of plane geometries......Page file4_0388.djvu
3.6 Differential geometry......Page file4_0392.djvu
3.6.1 Plane curves......Page file4_0393.djvu
3.6.2 Space curves......Page file4_0398.djvu
3.6.3 The Gaussian local theory of surfaces......Page file4_0401.djvu
3.7.1 Envelopes and caustics......Page file4_0411.djvu
3.7.2 Evolutes......Page file4_0412.djvu
3.7.4 Huygens\' tractrix and the catenary curve......Page file4_0413.djvu
3.7.5 The lemniscate of Jakob Bernoulli and Cassini\'s oval......Page file4_0414.djvu
3.7.7 Spirals......Page file4_0416.djvu
3.7.8 Ray curves (chonchoids)......Page file4_0417.djvu
3.7.9 Wheel curves......Page file4_0419.djvu
3.8.1 Basic ideas......Page file4_0422.djvu
3.8.2 Examples of plane curves......Page file4_0431.djvu
3.8.3 Applications to the calculation of integrals......Page file4_0436.djvu
3.8.4 The projective complex form of a plane algebraic curve......Page file4_0437.djvu
3.8.5 The genus of a curve......Page file4_0441.djvu
3.8.6 Diophantine Geometry......Page file4_0445.djvu
3.8.7 Analytic sets and the Weierstrass preparation theorem......Page file4_0451.djvu
3.8.8 The resolution of singularities......Page file4_0452.djvu
3.8.9 The algebraization of modern algebraic geometry......Page file4_0454.djvu
3.9.1 Basic ideas......Page file4_0460.djvu
3.9.2 Unitary geometry, Hilbert spaces and elementary particles......Page file4_0463.djvu
3.9.3 Pseudo-unitary geometry......Page file4_0470.djvu
3.9.4 Minkowski geometry......Page file4_0473.djvu
3.9.5 Applications to the special theory of relativity......Page file4_0477.djvu
3.9.6 Spin geometry and fermions......Page file4_0483.djvu
3.9.8 Symplectic geometry......Page file4_0492.djvu
4.1.1 True and false statements......Page file4_0496.djvu
4.1.2 Implications......Page file4_0497.djvu
4.1.3 Tautological and logical laws......Page file4_0499.djvu
4.2.2 Induction proofs......Page file5_1.djvu
4.2.4 Proofs of existence......Page file5_0002_1.djvu
4.2.5 The necessity of proofs in the age of computers......Page file5_0004_1.djvu
4.2.6 Incorrect proofs......Page file5_0005_1.djvu
4.3.1 Basic ideas......Page file5_0007_1.djvu
4.3.2 Calculations with sets......Page file5_0009_1.djvu
4.3.3 Maps......Page file5_0012_1.djvu
4.3.4 Cardinality of sets......Page file5_0014_1.djvu
4.3.5 Relations......Page file5_0015_1.djvu
4.4 Mathematical logic......Page file5_0018_1.djvu
4.4.1 Propositional calculus......Page file5_0019_1.djvu
4.4.2 Predicate logic......Page file5_0022_1.djvu
4.4.3 The axioms of set theory......Page file5_0023_1.djvu
4.4.4 Cantor\'s structure at infinity......Page file5_0024_1.djvu
4.5 The history of the axiomatic method......Page file5_0028_1.djvu
5. Calculus of Variations and Optimization......Page file5_0032_1.djvu
5.1.1 The Euler-Lagrange equations......Page file5_0033_1.djvu
5.1.2 Applications......Page file5_0036_1.djvu
5.1.3 Hamilton\'s equations......Page file5_0042_1.djvu
5.1.4 Applications......Page file5_0048_1.djvu
5.1.5 Sufficient conditions for a local minimum......Page file5_0050_1.djvu
5.1.6 Problems with constraints and Lagrange multipliers......Page file5_0053_1.djvu
5.1.7 Applications......Page file5_0054_1.djvu
5.1.8 Natural boundary conditions......Page file5_0057_1.djvu
5.2.1 The Euler-Lagrange equations......Page file5_0058_1.djvu
5.2.2 Applications......Page file5_0059_1.djvu
5.2.3 Problems with constraints and Lagrange multipliers......Page file5_0062_1.djvu
5.3 Control problems......Page file5_0063_1.djvu
5.3.1 Bellman dynamical optimization......Page file5_0064_1.djvu
5.3.2 Applications......Page file5_0065_1.djvu
5.3.3 The Pontryagin maximum principle......Page file5_0066_1.djvu
5.3.4 Applications......Page file5_0067_1.djvu
5.4.1 Local minimization problems......Page file5_0069_1.djvu
5.4.3 Applications to Gauss\' method of least squares......Page file5_0070_1.djvu
5.4.5 Problems with constraints and Lagrange multipliers......Page file5_0071_1.djvu
5.4.6 Applications to entropy......Page file5_0073_1.djvu
5.4.8 Duality theory and saddle points......Page file5_0074_1.djvu
5.5.1 Basic ideas......Page file5_0075_1.djvu
5.5.2 The general linear optimization problem......Page file5_0078_1.djvu
5.5.3 The normal form of an optimization problem and the minimal test......Page file5_0080_1.djvu
5.5.5 The minimal test......Page file5_0081_1.djvu
5.5.6 Obtaining the normal form......Page file5_0084_1.djvu
5.5.7 Duality in linear optimization......Page file5_0085_1.djvu
5.6.1 Capacity utilization......Page file5_0086_1.djvu
5.6.3 Distributing resources or products......Page file5_0087_1.djvu
5.6.4 Design and shift planing......Page file5_0088_1.djvu
5.6.5 Linear transportation problems......Page file5_0089_1.djvu
6. Stochastic Calculus - Mathematics of Chance......Page file5_0098_1.djvu
6.1 Elementary stochastics......Page file5_0099_1.djvu
6.1.1 The classical probability model......Page file5_0100_1.djvu
6.1.2 The law of large numbers due to Jakob Bernoulli......Page file5_0102_1.djvu
6.1.4 The Gaussian normal distribution......Page file5_0103_1.djvu
6.1.5 The correlation coefficient......Page file5_0106_1.djvu
6.1.6 Applications to classical statistical physics......Page file5_0109_1.djvu
6.2 Kolmogorov\'s axiomatic foundation of probability theory......Page file5_0112_1.djvu
6.2.1 Calculations with events and probabilities......Page file5_0115_1.djvu
6.2.2 Random variables......Page file5_0118_1.djvu
6.2.3 Random vectors......Page file5_0124_1.djvu
6.2.4 Limit theorems......Page file5_0128_1.djvu
6.2.5 The Bernoulli model for successive independent trials......Page file5_0130_1.djvu
6.3 Mathematical statistics......Page file5_0138_1.djvu
6.3.1 Basic ideas......Page file5_0139_1.djvu
6.3.2 Important estimators......Page file5_0140_1.djvu
6.3.3 Investigating normally distributed measurements......Page file5_0141_1.djvu
6.3.4 The empirical distribution function......Page file5_0144_1.djvu
6.3.5 The maximal likelihood method......Page file5_0150_1.djvu
6.3.6 Multivariate analysis......Page file5_0152_1.djvu
6.4 Stochastic processes......Page file5_0154_1.djvu
6.4.1 Time series......Page file5_0156_1.djvu
6.4.2 Markov chains and stochastic matrices......Page file5_0162_1.djvu
6.4.3 Poisson processes......Page file5_0164_1.djvu
6.4.4 Brownian motion and diffusion......Page file5_0165_1.djvu
6.4.5 The main theorem of Kolmogorov for general stochastic processes......Page file5_0169_1.djvu
7. Numerical Mathematics and Scientific Computing......Page file5_0172_1.djvu
7.1.1 The notion of algorithm......Page file5_0173_1.djvu
7.1.2 Representing numbers on computers......Page file5_0174_1.djvu
7.1.3 Sources of error, finding errors, condition and stability......Page file5_0175_1.djvu
7.2.1 Linear systems of equations - direct methods......Page file5_0178_1.djvu
7.2.2 Iterative solutions of linear systems of equations......Page file5_0185_1.djvu
7.2.3 Eigenvalue problems......Page file5_0188_1.djvu
7.2.4 Fitting and the method of least squares......Page file5_0192_1.djvu
7.3.1 Interpolation polynomials......Page file5_0198_1.djvu
7.3.2 Numerical differentiation......Page file5_0207_1.djvu
7.3.3 Numerical integration......Page file5_0208_1.djvu
7.4.1 Non-linear equations......Page file5_0216_1.djvu
7.4.2 Non-linear systems of equations......Page file5_0217_1.djvu
7.4.3 Determination of zeros of polynomials......Page file5_0220_1.djvu
7.5.1 Approximation in quadratic means......Page file5_0225_1.djvu
7.5.2 Uniform approximation......Page file5_0229_1.djvu
7.5.3 Approximate uniform approximation......Page file5_0231_1.djvu
7.6.1 Initial value problems......Page file5_0232_1.djvu
7.6.2 Boundary value problems......Page file5_0241_1.djvu
7.7.1 Basic ideas......Page file5_0244_1.djvu
7.7.2 An overview of discretization procedures......Page file5_0245_1.djvu
7.7.3 Elliptic differential equations......Page file5_0250_1.djvu
7.7.4 Parabolic differential equations......Page file5_0261_1.djvu
7.7.5 Hyperbolic differential equations......Page file5_0264_1.djvu
7.7.6 Adaptive discretization procedures......Page file5_0272_1.djvu
7.7.7 Iterative solutions of systems of equations......Page file5_0275_1.djvu
7.7.8 Boundary element methods......Page file5_0286_1.djvu
7.7.9 Harmonic analysis......Page file5_0288_1.djvu
7.7.10 Inverse problems......Page file5_0299_1.djvu
Sketch of the history of mathematics......Page file5_0302_1.djvu
Bibliography......Page file5_0326_1.djvu
List of Names......Page file5_0354_1.djvu
A......Page file5_0358_1.djvu
C......Page file5_0360_1.djvu
D......Page file5_0364_1.djvu
E......Page file5_0366_1.djvu
F......Page file5_0369_1.djvu
G......Page file5_0373_1.djvu
H......Page file5_0374_1.djvu
I......Page file5_0375_1.djvu
L......Page file5_0377_1.djvu
M......Page file5_0379_1.djvu
N......Page file5_0382_1.djvu
P......Page file5_0383_1.djvu
R......Page file5_0387_1.djvu
S......Page file5_0389_1.djvu
T......Page file5_0392_1.djvu
V......Page file5_0396_1.djvu
Z......Page file5_0397_1.djvu
Mathematical symbols......Page file5_0398_1.djvu
Dimensions of physical quantities......Page file5_0402.djvu
Tables of physical constants......Page file5_0404.djvu