دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Michael R. W. Johnson, Simon L. Harley سری: ISBN (شابک) : 0521765560, 9780521765565 ناشر: Cambridge University Press سال نشر: 2012 تعداد صفحات: 398 [416] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Orogenesis: The Making of Mountains به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Orogenesis: The Making of Mountains نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کوهزایی، فرآیند ساختن کوه، زمانی اتفاق میافتد که دو صفحه تکتونیکی با هم برخورد میکنند – یا مواد را به سمت بالا مجبور میکنند تا کمربندهای کوهستانی مانند آلپ یا هیمالیا را تشکیل دهند یا باعث فرورانش یک صفحه به زیر صفحه دیگر و در نتیجه ایجاد زنجیرههای کوه آتشفشانی مانند آند این کتاب با ادغام رویکردهای زمین شناسی ساختاری و دگرگونی، مروری به روز از تحقیقات کوهزایی و مقدمه ای بر خواص فیزیکی و شیمیایی کمربندهای کوهستانی ارائه می دهد. نمونههای جهانی بررسی میشوند، نقشهای متقابل دما و تغییر شکل در فرآیند کوهزایی بررسی میشوند و مفاهیم جدید مهم مانند جریان کانال توضیح داده میشوند. این کتاب مقدمه ای ارزشمند برای این رشته پرشتاب برای دانشجویان پیشرو در مقطع کارشناسی و کارشناسی ارشد زمین شناسی ساختاری، زمین ساخت صفحات و ژئودینامیک فراهم می کند و همچنین یک نمای کلی از تحقیقات را برای دانشگاهیان و محققانی که در زمینه های مرتبط از جمله ژئوشیمی سنگ شناسی و رسوب شناسی کار می کنند ارائه می دهد.
Orogenesis, the process of mountain building, occurs when two tectonic plates collide – either forcing material upwards to form mountain belts such as the Alps or Himalayas or causing one plate to be subducted below the other, resulting in volcanic mountain chains such as the Andes. Integrating the approaches of structural geology and metamorphism, this book provides an up-to-date overview of orogenic research and an introduction to the physico-chemical properties of mountain belts. Global examples are explored, the interactioning roles of temperature and deformation in the orogenic process are reviewed, and important new concepts such as channel flow are explained. This book provides a valuable introduction to this fast-moving field for advanced undergraduate and graduate students of structural geology, plate tectonics and geodynamics, and will also provide a vital overview of research for academics and researchers working in related fields including petrology geochemistry and sedimentology.
Cover Orogenesis: The Making of Mountains Title Copyright Contents Preface Acknowledgments 1: Major features of the Earth and plate tectonics Plate tectonics Mid Ocean Rises Plate boundaries Magnetic anomalies Lithospheric plates Orogens and plate tectonics Rheological control over continental break-up Dewey and Bird classification of orogens Ancient plates and orogeny Major features of orogens Orogenic deformation Mechanisms of lithospheric thickening Orogenic metamorphism Further reading 2: Driving mechanisms for plates, slab retreat and advance, and a cause of orogenesis Retreat and advance of subduction zones Gravity differences as driving forces in orogeny Applications of the Platt and England model 3: Physical and chemical principles: rock deformation, isostasy, geochronology and heat production in the lithosphere Rock deformation Coulomb fracture theory Stress and strain S- and L-tectonites Rotational and non-rotational strain Three-dimensional strain Rheology Controls of deformation Temperature Confining pressure Strain rate Fluids in rock deformation Permeability and non-permeability of rocks Enhanced pore fluid pressure Effective stress Fluids in earthquakes and in pathways in the crust Seismic pumping and valves Mechanisms of rock deformation Transformation and reaction-enhanced ductility Crystal plasticity Diffusive mass transfer Isostasy Geochronology and thermochronology Geotherms and thermal structure Heat transfer in the lithosphere Heat sources Heat advection Further reading 4: Large-scale features of orogens: thrusts and folds Arcuation of orogens and oroclines Physical properties of thrust faults Doubly vergent orogens Classification of thrusts (a) Gravity gliding or spreading/flow models (b) Extrusion of orogen-scale tectonic wedges (c) Dislocation model (d) 'Push-from-behind' model Detachment Time spans of thrusts Thrust systems Imbricates and duplexes Modelling Relationship between folds and thrusts Displacement on thrusts Restored sections Thrust terminations Transport direction in thrusting Thrust mechanics Orogenic wedge theory Ductile thrusts Internal strain in thrust sheets Folds in shear zones Rotation of thrust sheets about a vertical axis Further reading 5: Evolution of orogens The transition from passive margin to active margin Collision belts Mountain uplift Symmetry and asymmetry in orogens Strike-slip orogens Uplift and collapse of mountains Stages of collision Collision belts The Himalayan Karakoram and Tibetan orogen Mechanics of shortening in the Himalaya Indentation Thrusting The South Tibetan Detachment (STD) Underthrusting in the Himalaya Oroclines The metamorphic evolution of the Himalaya Karakoram The Tibetan Plateau Pre-Cenozoic thickening in Tibet? Deep crustal flow Differences between North and South Tibet N–S grabens Timing of Tibetan uplift The Alps Culminations and depressions Internal zone External zone The North Alpine Foreland Basin Jura mountains The Hinterland Evolution of the Alps Ultra-high-pressure metamorphism The depth of subduction Underplating and the orogenic wedge The current view on evolution Continent–continent convergence after final closure of the ocean:the late movements in the Alps Dextral strike-slip tectonics Indentation tectonics? Comparisons between the Alps and the Himalaya Cordilleran belts: the North and South American Cordillera Subduction of the Nazca plate Volcanism Sectors of the Andes Control over the upper slab deformation by the convergence direction of South America and Nazca Structural units and shortening in the Andean belt Thick-skinned or thin-skinned thrusts? Timing of crustal thickening Neotectonics High plateau Deep structure of the Andes The North American Cordillera Collision tectonics? Extensional tectonics The Canadian Cordillera Timing in orogeny Oblique collision belts Caledonides of the North Atlantic Caledonides in North America The British Caledonides The Grampian orogeny Obducted ophiolites The Scandian orogeny: closure of Iapetus Sinistral transpression during the Scandian orogeny Kinematic indicators of strike-slip movements Switch to orogen-parallel motion Sinistral transtensional regime Oblique collision in the Zagros Intraplate tectonics Further reading 6: Lateral spreading of orogens: foreland propagation, channel flow and weak zones in the crust Cause of orogenic spreading Orogenic collapse Metamorphic core complexes Channel flow Extrusion and channel flow Couette and Poiseuille flow Driving force for channel flow Channel flow and erosion Low-viscosity layers in the crust Tests for the channel flow model Deep crustal flow in Tibet Is channel flow a special case confined to the Himalaya? Further reading 7: Metamorphism in orogeny Introduction General characterisation of metamorphism Mapping metamorphism: from isograds to facies Facies series, progressive metamorphism and evaluation of regional P-T variations Early perspectives on metamorphism in relation to tectonics Metamorphism and thermal modelling Quantification of metamorphism: from mineral assemblages to P–T diagrams Composition-assemblage diagrams and projections Petrogenetic grids and Schreinemakers´ nets Divariant and multivariant equilibria – from Schreinemakers´ nets to pseudosections Geothermobarometry Crustal melting and orogeny Melting processes and temperature conditions Migmatites and migmatite terrains Partial melting, migmatites and the strength and behaviour of orogens The P–T realm of metamorphism: the current view Pressure-temperature (P–T) paths and pressure-temperature-time (P–T–t) paths Blueschist-eclogite and UHP metamorphism Background and P–T domain Timescales of HP/UHP metamorphism and rates of exhumation Models for UHP rock exhumation Collision and medium P/T metamorphism: Barrovian type metamorphism Barrovian facies series and the Himalayan case study Barrovian collisional metamorphism and inverted zones: models for orogen development Channel flow and Himalayan metamorphic zones: timing and P–T paths Problems with channel flow as a model for the Himalayan metamorphism Collision and medium P/T metamorphism: eclogite–high-pressure granulite (E-HPG) Background and P–T domain Pressure–temperature–time paths Formation and exhumation of E-HPG metamorphic rocks Bohemian Massif – rapid buoyancy-driven vertical extrusion of HPG? Caledonian E-HPG in Norway and Greenland The Grenville Province: heterogeneous ductile flow and exhumation of E-HPG rocks and deep orogen interiors Low P/T metamorphism: granulite and UHT metamorphism in orogeny Background and P–T domain (low P/T and UHT) Pressure–temperature–time paths in G-UHT Timescales of G-UHT metamorphism: orogenic and other settings Hot orogens and G-UHT metamorphism Gravitational spreading, core complexes and extensional metamorphism Concluding remarks 8: The erosion and exhumation of mountains Mountains as barriers Examples of the linkage between tectonics and erosion Dating the rates of exhumation and uplift in mountain belts The mass balance within an orogen Terminology The measurement of the rate of exhumation Orogenic history Exhumation of the Alps Exhumation of the Himalaya Further reading 9: Sedimentary history of the foredeep basins Isostasy and Bouguer anomalies Loading the lithosphere A classification of foreland basins Foredeeps and advancing thrust sheets Basin evolution Isostatic adjustments in foredeeps Thermochronology using detrital minerals Exhumation of orogens The exhumation and uplift of the Alps Unroofing the Himalaya Sediment budgets in SE Asia 10: Deep structure, mountain support and phase changes Rock densities and isostasy Support for the load of orogens Geophysical studies in the Himalaya–Tibet Recent geophysical work on the deep structure of Tibet Receiver function analysis and shear wave splitting detect the deep structure Phase changes in the deep structure Eclogitisation and the 'weighting of orogens' The Cz/lz ratio Eclogitisation and exhumation and collapse in other orogens The rapid phase change from granulite to eclogite facies and vice versa Basement control, reactivation and reworking Further reading 11: Mountains and climate Monsoons The significance of the Tibetan Plateau Climate change in the Cenozoic Evidence for global climate change in the late Miocene and Pliocene How does the Tibetan Plateau disrupt global circulation? A possible threshold height for the plateau A causal relation between plateau uplift and mantle dynamics When did the plateau attain its present elevation? Weakening of the monsoon at 8 Ma – a counter-argument Monsoon precipitation as a tectonic forcer Monsoon controls erosion in the Himalaya Himalayan uplift and the chemical composition of the oceans The 87Sr/86Sr plot Transport of calcium Drawdown of CO2 Oxygen isotopes Proposed link between the Himalaya and chemical erosion Erosion in channel flow Further reading 12: Secular change in orogeny Secular change in heat production and the Earth´s thermal budget Modelling the onset of subduction and its consequences Secular change in metamorphism in orogenic belts Accretion, amalgamation and collision from the Palaeoproterozoic to NeoArchaean The Trans-Hudson Orogeny of Canada The Lewisian of northwest Scotland The Archaean Gneiss Complex of southwest Greenland Weak lithospheres and 'ultrahot' orogens Further reading References Index