دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Patsy Wang-Iverson (ed.), Robert J. Lang (ed.), Mark Yim (ed.) سری: ISBN (شابک) : 9781439873502 ناشر: CRC Press سال نشر: 2011 تعداد صفحات: 632 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 52 مگابایت
در صورت تبدیل فایل کتاب Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اوریگامی 5: پنجمین نشست بین المللی علوم ، ریاضیات و آموزش اریگامی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Origami5 به سنت عالی چهار تجسم قبلی خود ادامه می دهد و کارهای ارائه شده در یک سری جلسات فوق العاده را مستند می کند که ارتباط بین اوریگامی، ریاضیات، علم، فناوری، آموزش و سایر زمینه های دانشگاهی را بررسی می کرد. پنجمین جلسه از این قبیل، 5OSME (13 تا 17 ژوئیه، 2010، دانشگاه مدیریت سنگاپور) پس از جلسات پیشین برای کشف ارتباطات بین رشته ای بین اوریگامی و دنیای واقعی. این کتاب با بخشی در تاریخ، هنر و طراحی اوریگامی آغاز می شود. پس از آن بخش هایی در مورد اوریگامی در آموزش و علوم، مهندسی و فناوری اوریگامی ارائه می شود و با بخشی در ریاضیات اوریگامی - جفتی که الهام بخش جلسه اصلی بود - به اوج می رسد. در این یک جلد، مجموعه وسیعی از اطلاعات تاریخی، توصیف هنرمندان از فرآیندهای خود، دیدگاهها و رویکردهای مختلف برای استفاده از اوریگامی در آموزش، ابزارهای ریاضی برای طراحی اوریگامی، کاربردهای تاشو در مهندسی و فناوری و همچنین مشاهده خواهید کرد. به عنوان پژوهشی اصیل و پیشرفته در زمینه زیربنای ریاضی اوریگامی.
Origami5 continues in the excellent tradition of its four previous incarnations, documenting work presented at an extraordinary series of meetings that explored the connections between origami, mathematics, science, technology, education, and other academic fields. The fifth such meeting, 5OSME (July 13–17, 2010, Singapore Management University) followed the precedent previous meetings to explore the interdisciplinary connections between origami and the real world. This book begins with a section on origami history, art, and design. It is followed by sections on origami in education and origami science, engineering, and technology, and culminates with a section on origami mathematics—the pairing that inspired the original meeting. Within this one volume, you will find a broad selection of historical information, artists’ descriptions of their processes, various perspectives and approaches to the use of origami in education, mathematical tools for origami design, applications of folding in engineering and technology, as well as original and cutting-edge research on the mathematical underpinnings of origami.
Origami5: Fifth International Meeting of Origami Science, Mathematics, and Education Origami5: Fifth International Meeting of Origami Science, Mathematics, and Education Contents Preface Acknowledgments Part I Origami History, Art, and Design History of Origami in the East and the West before Interfusion 1 Introduction 2 Origin of Origami: Many Misunderstandings and Some Suppositions 3 The East and the West: Different Styles, Different Traditions 4 Conclusion Bibliography Deictic Properties of Origami Technical Terms and Translatability: Cross-Linguistic Differences between English and Japanese 1 Introduction 2 Previous Studies on Origami Terms 3 Theoretical Backgrounds 4 Maze of (Un)Translatability 4.1 Translatable but Too Generic 4.2 Translatable but with Significant Differences 4.3 Directly Untranslatable Cases 4.4 Lost in Translation 5 Referentiality/Deictic versus Similarity: The Roleof a Japanese Verbal Noun Ori 6 Why Don’t the Japanese Use Verbs? 7 Further Considerations 8 Conclusion Bibliography Betsy Ross Revisited: General Fold and One-Cut Regular and Star Polygons 1 Introduction 2 Historical Sources for the Story 3 Replicating the Pattern for Stars Artifact 4 Generalizing the Betsy Ross Method to Fold and One- Cut Any Regular or Star Polygon 5 Discussion Bibliography Reconstructing David Huffman’s Legacy in Curved-Crease Folding 1 Introduction 2 Approach 2.1 Folding Methods 2.2 Reconstruction Methods 3 Reconstructions 3.1 Degree- 1 and - 2 Vertices 3.2 Inflated Vertices 3.3 Tessellations 3.4 Cones 3.5 Complex Shapes 4 Conclusion Bibliography Simulation of Nonzero Gaussian Curvature in Origami by Curved-Crease Couplets 1 Introduction 2 Geometry of a Curved Surface 3 Representation of Curved Surfaces by Paper Folding 4 Ruled Surfaces 5 Radial Formed Rotational Symmetric Models 5.1 Folding Radial Formed Rotational Symmetric Models from a Crease Pattern 5.2 Folding Radial Formed Rotational Symmetric Models without Crease Patterns 6 Cylindrical Formed Rotational Symmetric Models 7 Applications of Couplets to Folding Animal Models 8 Conclusion Bibliography Compression and Rotational Limitations of Curved Corrugations 1 Introduction 2 Method 3 Discussion of Results 4 Conclusions Bibliography Polygon Symmetry Systems 1 Introduction 2 Polygon Construction 3 Unified Algorithm for Polygon Construction 4 Polygonal Grids and Their Properties 5 Symmetrical Twist-Fold Constructions 6 Generalizing Folding Algorithms to DifferentPolygons 7 Conclusion Bibliography New Collaboration on Modular Origami and LED 1 Introduction 2 AKARI- ORIGAMI: Some Modular Works 3 Workshop 4 Future of AKARI- ORIGAMI Bibliography Using the Snapology Technique to Teach Convex Polyhedra 1 Introduction 2 Polyhedra Review 2.1 Platonic Solids 2.2 Archimedean Solids 3 Snapology Technique 3.1 Terminology 3.2 Assembling the Basic Icosahedron 3.3 Other Platonic Solids 4 Brief Introduction to General Snapology 5 Observations 6 Conclusions Bibliography A Systematic Approach to Twirl Design 1 Introduction 2 The First Attempt: Small ( Change) Is Beautiful 3 A Square Is a Rectangle: Metamorphosis 4 Planar Decorative Area: From Octahedron to Cube, Mosaic Twirls 5 Shapes and Lengths: Different Spirals 6 Minimal Folding: No Crease Origami 7 Consensus Building: Spirals Work Together with Flaps- and- Pockets, Macro- modules 8 Conclusion Bibliography Oribotics: The Future Unfolds 1 Introduction 2 Industrial Evolution of Oribotics 3 Crease Pattern and Mechanical Design 4 Paper versus Fabric 4.1 Folding Polyester Fabric 4.2 Paper Choice 4.3 Crease Pattern Design 5 Interaction Design 6 Conclusion and Further Work Bibliography Part II Origami in Education Origametria and the van Hiele Theory of Teaching Geometry 1 Introduction 2 The van Hiele Theory of Geometric Teaching 3 Origami and the Van Hiele Theory 4 Time of Learning 5 Gradually Building Knowledge and Concepts 6 Using Origametria to Eliminate Misconceptions 7 Origametria and van Hiele: An Example from the Classroom 8 Conclusion: The Benefits of Using Origametria in the van Hiele System Bibliography Student Teachers Introduce Origami in Kindergarten and Primary Schools: Froebel Revisited 1 Introduction 2 Objectives 3 Review of the Literature 4 Problem Statements 5 Data Collection, Analysis, and Discussion 6 Conclusion and Next Steps Bibliography Narratives of Success:Teaching Origami in Low-Income Urban Communities 1 Introduction 2 Origami in Mathematics 2.1 Englewood, Illinois 2.2 Achievement Academy in Englewood 2.3 Origami and Student Self- Confidence 3 Origami in Art Class 3.1 Learning to Follow Instructions with Origami 4 Origami in Elementary School 4.1 Learning English through Origami 4.2 Origami in a Summer Program 5 Discussion Bibliography Origami and Spatial Thinking of College-Age Students 1 Introduction 2 Design and Purpose 2.1 Methodology 2.2 Sample 2.3 Instruments 2.4 Treatment 3 Results 3.1 Comparing Pretest and Posttest Spatial Skills 3.2 Influence of Spatial Experiences on Results 3.3 Influence of Fields of Study on Results 4 Conclusion Appendix: Excerpt from the Student Survey Bibliography Close Observation and Reverse Engineering of Origami Models 1 Introduction 2 Rationale/ Goals 3 Origins and Context 4 An Approach to Close Observation and Reverse Engineering 4.1 Close Observation of the Modular Origami Object 4.2 Deconstruction of the Piece 4.3 Close Observation of the Unit 4.4 Unfolding the Unit 4.5 Re- assembly 4.6 Reflections and Revisions: Re- engineering 5 An Example 6 Close Observation and Reverse Engineering in Learning and Problem Solving 7 Our Observations of CORE 8 Challenges, a Question, and Next Steps 9 Conclusion Bibliography Origami and Learning Mathematics 1 Introduction 2 Using Origami in Mathematics Lessons 2.1 Learning to Fold 2.2 Common Folding Problems 3 Using Origami to Teach Conceptually Demanding Mathematics 3.1 Angles 3.2 Polygons 3.3 Symmetry 3.4 Fractions 3.5 Reasoning and Proof 4 Conclusions Bibliography Hands-On Geometry with Origami 1 Introduction 2 New Trends in Teaching 2.1 Teacher Education in Germany 2.2 The MINTmachen! Project 2.3 Research- Driven Projects 2.4 Teacher Exam Thesis 2.5 Putting It All Together 3 Design of the Coursework 3.1 Overall Goal 3.2 Example 1: Haga's Theorem 3.3 Example 2: Trisecting the Angle 3.4 Example 3: Axiomatics in Geometry and Origami 3.5 Remarks on the Educational Standards 4 Evaluation and Lessons Learned Future Plans Bibliography My Favorite Origamics Lessons on the Volume of Solids 1 Introduction 2 Exploration 1: Origami Masu Cubic Box 3 Exploration 2: Origami CK- Octahedron 4 Exploration 3: The Building Block of CK and KC 5 Exploration 4: Origami KC- Heptahedron 6 Exploration 5: Tessellating Solids 7 Origami, Science, Mathematics, and Education 8 Conclusion Appendix: My Teaching Notes for Exploration 1 Bibliography Part III Origami Science, Engineering, and Technology Rigid-Foldable Thick Origami 1 Introduction 2 Problem Description 2.1 Rigid Origami without Thickness 2.2 Existing Methods 3 Proposed Method 3.1 Tapered Panels 3.2 Limiting the Unfolded State 3.3 Constant Thickness Panels 3.4 Global Collision 3.5 Characteristics 4 Application for Designs 5 Conclusion Bibliography Folding a Patterned Cylinder by Rigid Origami 1 Introduction 2 Kinematics of Spherical 4R Linkage and Its One DoF Assembly 3 Rigid Origami Patterns to Form Cylindrical Structures 4 Conclusions and Discussion Bibliography The Origami Crash Box 1 Introduction 2 Description of the Origami Pattern Design 3 Finite Element Modeling 4 Results and Discussion 4.1 Axial Crushing of the Conventional Square Tube 4.2 Collapse Mode and Energy Absorption Properties of the Origami Tube 4.3 Effects of the Ratio 4.4 Effects of the Ratio 5 Conclusion Bibliography Origami Folding: A Structural Engineering Approach 1 Introduction 2 Folded Textured Sheets 2.1 Engineering Applications 3 Mechanical Modeling Method 3.1 Governing Equations 3.2 Kinematic Analysis 3.3 Stiffness Analysis 3.4 Coordinate Transformation 4 Conclusion Bibliography Designing Technical Tessellations 1 Introduction: Paper as Technical Material 2 Lightweight Construction with Paper 3 Modular Isometric Origami 3.1 Modularity 3.2 Rigid and Isometric Origami 4 Design Strategies 4.1 Bottom- Up 4.2 Top- Down 5 Not So Serious— Some Fun 6 Conclusion Bibliography A Simulator for Origami-Inspired Self-Reconfigurable Robots 1 Introduction 2 Foldable Programmable Matter 3 Representing Programmable Matter 4 Editor Implementation and Usage 4.1 Drawing and Creating Crease Patterns 4.2 Runtime Analysis 5 PhysX Simulator and Integration 6 Conclusion Bibliography A CAD System for Diagramming Origami with Prediction of Folding Processes 1 Introduction 2 Related Work 3 Our Proposed System 3.1 Listing Candidates by Applying Possible Foldings 3.2 Removing Duplicate Candidates 3.3 Ranking of Candidates 4 Results and Discussion 4.1 Efficiency of the Prediction Function 4.2 Enumeration of Simple Origami Shapes 5 Conclusion and Future Work Bibliography Development of an Intuitive Algorithm for Diagramming and 3D Animated Tutorial for Folding Crease Patterns 1 Introduction 2 Computational Origami 3 Basic Definitions on Technical Origami 4 Turning a CP into a Folding Sequence 4.1 Main Algorithm 4.2 Choose First Node 4.3 Maneuver 10 4.4 Choose and Fold Next Internal Node 4.5 Maneuvers 1, 2, 6, 7, and 8 4.6 Choose and Fold Next Molecule 4.7 Maneuvers 3, 4, 5, and 9 4.8 Organize Flaps 4.9 Propagate Folds 5 Applicability Scope 6 Example 7 Software Implementation 8 Conclusion Bibliography Hands-Free Microscale Origami 1 Introduction 2 Stress- Based Microscale Folding 2.1 Modeling of Multilayer Thin- Film Curvatures 2.2 Methods and Materials of Construction 2.3 Triggers of Folding and Response to Environmental Stimuli 3 Miniaturized Microscale Origami Structures: Unidirectional Folding 4 Bidirectional Microscale Folding Using Thin Metal Films 4.1 Self- Folding of Micropatterned Cubic Cores 4.2 Self- Folding of Micropatterned Cylindrical Stents with Changing Radii 4.3 Self- Folding of Micropatterned Paper Airplanes 5 Conclusion and Future Possibilities Bibliography Foldable Parylene Origami Sheets Covered with Cells: Toward Applications in Bio-Implantable Devices 1 Introduction 2 Materials and Methods 2.1 Preparation of a Parylene Sheet with Micro- sized Origami Folds 2.2 Preparation of Cells onto the Parylene Sheet, Folding, and Deploying the Sheet 3 Results and Discussion 4 Conclusions Bibliography Part IV Mathematics of Origami Introduction to the Study of Tape Knots 1 Introduction 2 Why a Knot in a Tape Forms a Regular Pentagon 3 Regular Odd- Sided Polygonal Knots 4 Regular Even- Sided Polygonal Knots 5 Regular Decagonal Knots 6 Stability of Knots 7 Nonregular Polygonal Knots 8 Conclusion and Further Research Bibliography Universal Hinge Patterns for Folding Orthogonal Shapes 1 Introduction 2 Definitions 3 Cube Gadgets 4 Folding Polycubes 4.1 Hinge Pattern Completeness 4.2 Paper Dimensions 4.3 Number of Layers 5 Implementation 6 Rigid Foldability and Self- Folding Sheets Bibliography A General Method of Drawing Biplanar Crease Patterns 1 Introduction 2 Mathematical Conventions 3 Defining the Biplanar 4 Drawing the Net 5 Drawing the Crease Pattern 5.1 The Gadget 5.2 Overlapping Inside the Biplanar 5.3 Flat Surrounding Paper 5.4 Positioning Triangular Walls 6 Conclusion Bibliography A Design Method for Axisymmetric Curved Origami with Triangular Prism Protrusions 1 Introduction 2 Shape of the Target 3D Origami 3 Designing the Crease Pattern 3.1 Conical Type 3.2 Cylindrical Type 4 Examples and Discussions 5 Conclusion Bibliography Folding Any Orthogonal Maze 1 Introduction 2 Algorithm Bibliography Every Spider Web Has a Simple Flat Twist Tessellation 1 Introduction 2 Shrink and Rotate 2.1 Twist and Aspect Ratio 2.2 Crease Pattern/ Folded Form Duality 3 Nonregular Polygons 3.1 A Broken Tessellation 3.2 A Valid Rhombus Tessellation 4 Maxwell's Reciprocal Figures 4.1 Indeterminateness and Impossibility 4.2 Positive and Negative Edge Lengths Bibliography Flat-Unfoldability and Woven Origami Tessellations 1 Introduction 2 Woven Tessellations 3 Simple Woven Patterns 4 Flat- Unfoldability 5 Parameterizing the Woven Tessellation 6 Conclusion Bibliography Degenerative Coordinates in 22.5 Grid System 1 Introduction 2 Model 3 Construction 4 Degeneracy 5 Conclusion Bibliography Two Folding Constructions 1 Introduction 2 Method A: Descartes' Construction 3 MethodB: MyConstruction 4 Conclusion Bibliography Variations on a Theorem of Haga 1 Introduction 2 Haga's Theorem 3 Variation1 4 Variation2 5 A Comparison 6 Variations on the Variations 6.1 Rectangles 6.2 From the Strip to the Square 7 Conclusion Bibliography Precise Division of Rectangular Paper into an Odd Number of Equal Parts without Tools: An Origamics Exercise 1 Introduction 2 Preparation 3 Trisection 4 Five- Section 5 Seven- Section 6 Pendulum Symmetry 7 Nine- Section 8 Individual Line for Higher- Number Sections 9 Conclusions Bibliography The Speed of Origami Constructions Versus Other Construction Tools 1 Introduction 2 Geometric Tools 2.1 Origami 2.2 Ruler and Compass 2.3 Conics 3 Constructions and Measures 3.1 Measures Associated with Constructions 3.2 Comparison of Constructions 4 Optimal Constructions 5 Conclusions Bibliography A Note on Operations of Spherical Origami Construction 1 Introduction 2 The Eight Operations of Planar Origami Construction 3 Notation 4 Spherical Origami 5 Operations of Spherical Origami Construction 6 Conclusion Bibliography Origami Alignments and Constructions in the Hyperbolic Plane 1 Introduction 2 Basic Alignments and Folds 2.1 Alignments 2.2 Folds 2.3 Unique Alignment Folds 2.4 Quadratic Folds 2.5 Quartic Folds 3 Relations between the Alignment Axioms 3.1 Totally Real Constructions 3.2 Radical Axis and Ruler- Compass Constructions 3.3 Saccheri Quadrilaterals 3.4 Ruler- Compass Constructions 3.5 Simulation of Constructions with 4 Trigonometry and More Folding in 4.1 Hyperbolic Coordinates, Distances, Angles 4.2 Parallel Ruler and Its Simulation 4.3 Theorem of Mordukhai- Boltovskoi 4.4 Construction of Regular Tessellations 5 The Non- Euclidean Parabola 6 H6 6.1 Higher Origami Constructions Bibliography A Combinatorial Definition of 1D Flat-Folding 1 Introduction 2 Flat- Foldable 1D Origami 3 Mingling 4 Proof of the Flat- Foldability Theorem Bibliography Stamp Foldings with a Given Mountain-Valley Assignment 1 Introduction 2 Preliminaries 3 Universality of the Simple Folding Model 4 The Number of Folded States 5 Concluding Remarks Bibliography Flat Vertex Fold Sequences 1 Introduction 2 The Basics of Flat Vertex Folds 3 Flat Vertex Fold Sequences 4 Conclusion Bibliography Circle Packing for Origami Design Is Hard 1 Introduction 2 Circle- River Design 3 Packing and Complexity 4 Symmetric 3- Pockets 5 Triangular Paper 6 Rectangular Paper 7 Square Paper 8 Filling Gaps 9 Encoding the Input 10 A Positive Result 11 Conclusions Bibliography Contributors Index Color Insert