دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hiroyoshi Naito
سری:
ISBN (شابک) : 1119146100, 9781119146100
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: 387
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Organic Semiconductors for Optoelectronics (Wiley Series in Materials for Electronic & Optoelectronic Applications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نیمه هادی های ارگانیک برای اپتوالکترونیک (سری Wiley در مواد برای کاربردهای الکترونیکی و اپتوالکترونیکی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پوشش جامع الکترونیک آلی، از جمله نظریه بنیادی، ویژگیهای اساسی، روشهای مشخصسازی، فیزیک دستگاه، و روندهای آینده
مواد نیمهرسانای آلی دارای پتانسیل تجاری گستردهای برای طیف وسیعی هستند. از برنامههای کاربردی، از نمایشگرهای OLED خود ساطع و روشنایی حالت جامد گرفته تا لوازم الکترونیکی پلاستیکی و سلولهای خورشیدی ارگانیک. از آنجایی که تحقیقات در دستگاههای الکترونیک نوری ارگانیک با سرعت بیسابقهای گسترش مییابد، نیمهرسانایهای آلی برای نمایشگرهای انعطافپذیر، حسگرهای زیستی و سایر دستگاههای سبز مقرونبهصرفه به روشهایی که با نیمهرساناهای معدنی معمولی امکانپذیر نیست، استفاده میشوند.
نیمههادیهای آلی برای اپتوالکترونیک مروری بهروز درباره نظریههای بنیادی و آخرین پیشرفتهای تحقیق و توسعه در نیمههادیهای آلی است. این جلد جامع با مشارکتهای یک تیم بینالمللی از کارشناسان، ویژگیهای اساسی نیمهرساناهای آلی، تکنیکهای مشخصسازی، فیزیک دستگاه، و روندهای آینده در توسعه دستگاههای آلی را پوشش میدهد. فصلهای مفصل اطلاعات کلیدی درباره فیزیک دستگاه ترانزیستورهای اثر میدان آلی، دیودهای ساطع کننده نور آلی، سلولهای خورشیدی آلی، حسگرهای نوری آلی و موارد دیگر ارائه میکنند. این منبع معتبر:
یک افزوده جدید مهم به سری Wiley در مواد برای i> برنامه های الکترونیکی و نوری، نیمه هادی های آلی برای الکترونیک نوری شکاف بین کتاب های پیشرفته و کتاب های درسی دوره کارشناسی در مورد فیزیک نیمه هادی ها و فیزیک حالت جامد را پر می کند. خواندن این کتاب برای محققان دانشگاهی، دانشجویان فارغ التحصیل و متخصصان صنعت مرتبط با تحقیق و توسعه الکترونیک آلی، علم مواد، دستگاههای لایه نازک، و اپتوالکترونیک ضروری است.
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends
Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors.
Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource:
An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.
Cover Title Page Copyright Contents List of Contributors Series Preface Preface Chapter 1 Electronic Structures of Organic Semiconductors 1.1 Introduction 1.2 Electronic Structures of Organic Crystalline Materials 1.2.1 Free‐Electron Picture 1.2.2 Tight‐Binding Framework 1.2.2.1 Formalism 1.2.2.2 Simple Example 1.2.3 Electronic Properties Based on the Electronic Structure 1.2.3.1 Characteristics of the Energy Band 1.2.3.2 Band Gap (ΔEg) 1.2.3.3 Fermi Energy (εF) and Fermi Level (EF) 1.2.3.4 Band Width (W) 1.2.3.5 Ionization Potential (Ip) 1.2.3.6 Electron Affinity (Ea) 1.2.3.7 Density of States (DOS) 1.2.3.8 Effective Mass (m*) 1.2.3.9 CO Pattern 1.2.3.10 Electron Density and Bond Order 1.2.3.11 Total Energy of 1D Crystal (Etot) 1.2.3.12 Mobility 1.3 Injection of Charge Carriers 1.3.1 Organic Conductive Polymers 1.3.2 Organic Charge‐Transfer Crystals 1.4 Transition from the Conductive State 1.4.1 Peierls Transition 1.4.1.1 Polyacetylene 1.4.1.2 TTF‐TCNQ 1.4.2 Competition of Spin Density Wave and Superconductivity 1.5 Electronic Structure of Organic Amorphous Solid 1.5.1 Examination of Electronic Structures 1.5.1.1 Direct Calculation of the Local Structure 1.5.1.2 Effective‐Medium Approximation 1.5.2 Localized Levels and Mobility Edge 1.5.3 Hopping Process 1.5.3.1 Hopping Process between the Nearest Neighbors 1.5.3.2 Variable Range Hopping (VRH) 1.5.3.3 Hopping Process via the Dopants 1.6 Conclusion Acknowledgment References Chapter 2 Electronic Transport in Organic Semiconductors 2.1 Introduction 2.2 Amorphous Organic Semiconductors 2.2.1 Measurements of Transport Properties 2.2.1.1 Time‐of‐Flight Transient Photocurrent Experiment 2.3 Experimental Features of Electronic Transport Properties 2.4 Charge Carrier Transport Models 2.4.1 Multiple Trapping Model 2.4.2 Gaussian Disorder Model (GDM) 2.4.3 Correlated Disorder Model (CDM) 2.4.4 GDM vs. CDM 2.4.5 Polaronic Transport 2.4.6 Transport Energy 2.4.7 Analytical Approach to Hopping Transport 2.4.8 Functional Forms of Localized State Distributions 2.5 Prediction of Transport Properties in Amorphous Organic Semiconductors 2.6 Polycrystalline Organic Semiconductors 2.6.1 Transport in Polycrystalline Semiconductors and Technological Importance of Polycrystalline Silicon 2.6.2 Field‐Effect Mobility in Organic Polycrystalline Semiconductors 2.6.3 Performance of Field‐Effect Transistors with Polycrystalline Organic Semiconductors 2.7 Single‐Crystalline Organic Semiconductors 2.7.1 Band Conduction in Single‐Crystalline Organic Semiconductors 2.7.2 Performance of Field‐Effect Transistors with Single Crystalline Organic Semiconductors 2.8 Concluding Remarks Acknowledgment References Chapter 3 Theory of Optical Properties of Organic Semiconductors 3.1 Introduction 3.2 Photoexcitation and Formation of Excitons 3.2.1 Photoexcitation of Singlet Excitons due to Exciton‐photon Interaction 3.2.2 Excitation of Triplet Excitons 3.2.2.1 Direct Excitation to Triplet States Through Exciton‐Spin‐Orbit‐Photon Interaction 3.2.2.2 Indirect Excitation of Triplet Excitons Through Intersystem Crossing and Exciton‐Spin‐Orbit‐Phonon Interaction 3.3 Exciton up Conversion 3.4 Exciton Dissociation 3.4.1 Process of Conversion from Frenkel to CT Excitons 3.4.2 Dissociation of CT Excitons References Chapter 4 Light Absorption and Emission Properties of Organic Semiconductors 4.1 Introduction 4.2 Electronic States in Organic Semiconductors 4.2.1 Fluorescence Emitters 4.2.2 Phosphorescence Emitters 4.2.3 TADF Emitters 4.2.4 &rmpi; Conjugated Polymers 4.3 Determination of Excited‐state Structure Using Nonlinear Spectroscopy 4.3.1 Background 4.3.2 Experimental Technique 4.3.2.1 EA 4.3.2.2 TPE 4.3.3 Experimental Results 4.3.3.1 DE2 4.3.3.2 Ir(ppy)3 4.3.3.3 PFO 4.4 Decay Mechanism of Excited States 4.4.1 Background 4.4.2 Experimental Technique 4.4.2.1 Time‐resolved PL Measurements 4.4.2.2 PLQE Measurements 4.4.3 Experimental Results 4.4.3.1 PFO 4.4.3.2 Ir(ppy)3 4.4.3.3 4CzIPN 4.5 Summary Acknowledgement References Chapter 5 Characterization of Transport Properties of Organic Semiconductors Using Impedance Spectroscopy 5.1 Introduction 5.2 Charge‐Carrier Mobility 5.2.1 Methods for Mobility Measurements 5.2.2 Theoretical Basis for Determination of Charge‐Carrier Mobility 5.2.3 Determination of Charge‐Carrier Mobility 5.2.4 Influence of Barrier Height for Carrier Injection on Determination of Charge‐Carrier Mobility 5.2.5 Influence of Contact Resistance on Determination of Charge‐Carrier Mobility 5.2.6 Influence of Localized States on Determination of Charge‐Carrier Mobility 5.2.7 Demonstration of Determination of Charge‐Carrier Mobility 5.3 Localized‐State Distributions 5.3.1 Methods for Localized‐State Measurements 5.3.2 Theoretical Basis for Determination of Localized‐State Distribution 5.3.3 Demonstration of Determination of Localized‐State Distribution 5.4 Lifetime 5.4.1 Methods for Deep‐Trapping‐Lifetime Measurements 5.4.2 Determination of Deep‐Trapping‐Lifetime using the Proposed Method 5.4.3 Validity of the Proposed Method 5.4.4 Demonstration of Determination of Deep‐Trapping‐Lifetime 5.5 IS in OLEDs and OPVs 5.6 Conclusions Acknowledgments References Chapter 6 Time‐of‐Flight Method for Determining the Drift Mobility in Organic Semiconductors 6.1 Introduction 6.2 Principle of the TOF Method 6.2.1 Carrier Mobility and Transient Photocurrent 6.2.2 Standard Setup of the TOF Measurement 6.2.3 Sample Preparation 6.2.4 Current Mode and Charge Mode 6.2.5 Instructions in the TOF Measurements 6.3 Information Obtained From the TOF Experiments 6.4 Techniques Related to the TOF Measurement 6.4.1 Xerographic TOF Method 6.4.2 Lateral TOF Method 6.4.3 TOF Measurements Under Pulse Voltage Application 6.4.4 Dark Injection Space Charge‐Limited Transient Current Method 6.5 Conclusion References Chapter 7 Microwave and Terahertz Spectroscopy 7.1 Introduction 7.2 Instrumental Setup of Time‐Resolved Gigahertz and Terahertz Spectroscopies 7.3 Theory of Complex Microwave Conductivity in a Resonant Cavity 7.4 Microwave Spectroscopy for Organic Solar Cells 7.5 Frequency‐Modulation: Interplay of Free and Shallowly‐Trapped Electrons 7.6 Organic‐Inorganic Perovskite 7.7 Conclusions Acknowledgement References Chapter 8 Intrinsic and Extrinsic Transport in Crystalline Organic Semiconductors: Electron‐Spin‐Resonance Study for Characterization of Localized States 8.1 Intrinsic and Extrinsic Transport in Crystalline Organic Semiconductors 8.2 Electron Spin Resonance Study for Characterization of Localized States 8.2.1 Introduction into ESR Study 8.2.2 ESR Spectra of Trapped Carriers 8.2.2.1 ESR Spectra for Single Molecule and a Cluster Containing Several Molecules 8.2.2.2 ESR Spectra for a Trap in Crystal 8.2.2.3 ESR Spectra for Several Kinds of Traps 8.2.3 From ESR Spectrum to Trap Distribution Over Degree of Localization 8.2.3.1 Method to Solve Inverse Problem 8.2.3.2 Tests of SOM Stability Against the Noise in Experimental Data 8.2.3.3 Practical Implementation of Method: Distribution of Traps in Pentacene TFT 8.2.3.4 Reliability of Trap Distribution Result 8.2.4 Transformation From Spatial Distribution to Energy Distribution 8.2.4.1 Trap Model: 2D Holstein Polaron and On‐Site Attractive Center 8.2.4.2 Energy Distribution of Traps in Pentacene TFTs 8.2.5 Discussion 8.2.6 Summary of Trap Study 8.3 Conclusion Acknowledgments References Chapter 9 Second Harmonic Generation Spectroscopy 9.1 Introduction 9.2 Basics of the EFISHG 9.2.1 Macroscopic Origin of the SHG 9.2.2 Microscopic Description of the SHG 9.2.3 EFISHG Measurements 9.2.4 Evaluation of In‐plane Electric Field in OFET 9.2.5 Direct Imaging of Carrier Motion in OFET 9.3 Some Application of the TRM‐SHG to the OFET 9.3.1 Trap Effect 9.3.2 Metal Electrode Dependence 9.3.3 Anisotropic Carrier Transport 9.4 Application of the TRM‐SHG to OLED 9.5 Conclusions Acknowledgement References Chapter 10 Device Physics of Organic Field‐effect Transistors 10.1 Organic Field‐Effect Transistors (OFETs) 10.1.1 Structure of OFETs 10.1.2 Operation Principles of OFETs 10.1.3 Carrier Traps 10.1.4 Transport Models in Channels 10.1.4.1 Band Transport Model 10.1.4.2 Multiple Trap and Release Model 10.1.4.3 Hopping Model 10.1.4.4 Dynamic Disorder Model 10.1.4.5 Grain Boundary Model 10.1.5 Carrier Injection at Source and Drain Electrodes 10.1.5.1 Transmission Line Method (TLM) 10.1.5.2 Four‐Terminal Measurement 10.1.5.3 Effect of Contact Resistance on Apparent Mobility References Chapter 11 Spontaneous Orientation Polarization in Organic Light‐Emitting Diodes and its Influence on Charge Injection, Accumulation, and Degradation Properties 11.1 Introduction 11.2 Interface Charge Model 11.3 Interface Charge in Bilayer Devices 11.4 Charge Injection Property 11.5 Degradation Property 11.6 Conclusions Acknowledgement References Chapter 12 Advanced Molecular Design for Organic Light Emitting Diode Emitters Based on Horizontal Molecular Orientation and Thermally Activated Delayed Fluorescence 12.1 Introduction 12.2 Molecular Orientation in TADF OLEDs 12.3 Molecular Orientation in Solution Processed OLEDs References Chapter 13 Organic Field Effect Transistors Integrated Circuits 13.1 Introduction 13.2 Organic Fundamental Circuits 13.2.1 Inverter for Logic Components 13.2.2 Logic NAND and NOR Gates 13.2.3 Active Matrix Elements 13.3 High Performance Organic Transistors Applicable to Flexible Logic Circuits 13.3.1 Reducing the Contact Resistance 13.3.2 Downscaling the Channel Sizes and Vertical Transistors 13.3.3 High‐Speed Organic Transistors 13.4 Integrated Organic Circuits 13.4.1 RFID Tag Applications 13.4.2 Sensor Readout Circuits 13.5 Conclusions References Chapter 14 Naphthobisthiadiazole‐Based Semiconducting Polymers for High‐Efficiency Organic Photovoltaics 14.1 Introduction 14.2 Semiconducting Polymers Based on Naphthobisthiadiazole 14.3 Quaterthiophene–NTz Polymer: Comparison with the Benzothiadiazole Analogue 14.4 Naphthodithiophene–NTz Polymer: Importance of the Backbone Orientation 14.5 Optimization of PNTz4T Cells: Distribution of Backbone Orientation vs Cell Structure 14.6 Thiophene, Thiazolothiazole–NTz Polymers: Higly Thermally Stabe Solar Cells 14.7 Summary References Chapter 15 Plasmonics for Light‐Emitting and Photovoltaic Devices 15.1 Optical Properties of the Surface Plasmon Resonance 15.2 High‐Efficiency Light Emissions using Plasmonics 15.3 Mechanism for the SP Coupled Emissions 15.4 Quantum Efficiencies and Spontaneous Emission Rates 15.5 Applications for Organic Materials 15.6 Device Application for Light‐Emitting Devices 15.7 Applications to High‐Efficiency Solar Cells Acknowledgements References Index EULA