ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Organic Chemistry: Concepts and Applications

دانلود کتاب شیمی آلی: مفاهیم و کاربردها

Organic Chemistry: Concepts and Applications

مشخصات کتاب

Organic Chemistry: Concepts and Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781119504580, 1119504589 
ناشر: Wiley 
سال نشر: 2020 
تعداد صفحات: [621] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Organic Chemistry: Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی آلی: مفاهیم و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Preface
About the Companion Website
Chapter 1 Bonding and Structure of Organic Compounds
	1.1 Introduction
	1.2 Electronic Structure of Atoms
		1.2.1 Orbitals
		1.2.2 Electronic Configuration of Atoms
		1.2.3 Lewis Dot Structures of Atoms
	1.3 Chemical Bonds
		1.3.1 Ionic Bonds
		1.3.2 Covalent Bonds
		1.3.3 Shapes of Molecules
		1.3.4 Bond Polarity and Polar Molecules
		1.3.5 Formal Charges
		1.3.6 Resonance
	1.4 Chemical Formulas
		1.4.1 Line-Angle Representations of Molecules
	1.5 The Covalent Bond
		1.5.1 The Single Bond to Hydrogen
		1.5.2 The Single Bond to Carbon
		1.5.3 The Single Bond to Heteroatoms
		1.5.4 The Carbon–Carbon Double Bond
		1.5.5 The Carbon–Heteroatom Double Bond
		1.5.6 The Carbon–Carbon Triple Bond
		1.5.7 The Carbon–Heteroatom Triple Bond
	1.6 Bonding – Concept Summary and Applications
	1.7 Intermolecular Attractions
		1.7.1 Dipole–Dipole Intermolecular Attractions
		1.7.2 Intermolecular Hydrogen Bond
		1.7.3 Intermolecular London Force Attractions
	1.8 Intermolecular Molecular Interactions – Concept Summary and Applications
	End of Chapter Problems
Chapter 2 Carbon Functional Groups and Organic Nomenclature
	2.1 Introduction
	2.2 Functional Groups
	2.3 Saturated Hydrocarbons
		2.3.1 Classification of the Carbons of Saturated Hydrocarbons
	2.4 Organic Nomenclature
	2.5 Structure and Nomenclature of Alkanes
		2.5.1 Nomenclature of Straight Chain Alkanes
		2.5.2 Nomenclature of Branched Alkanes
		2.5.3 Nomenclature of Compounds that Contain Heteroatoms
		2.5.4 Common Names of Alkanes
		2.5.5 Nomenclature of Cyclic Alkanes
		2.5.6 Nomenclature of Branched Cyclic Alkanes
		2.5.7 Nomenclature of Bicyclic Compounds
	2.6 Unsaturated Hydrocarbons
	2.7 Structure and Nomenclature of Alkenes
		2.7.1 Nomenclature of Branched Alkenes
		2.7.2 Nomenclature of Polyenes
		2.7.3 Nomenclature of Cyclic Alkenes
	2.8 Structure and Nomenclature of Substituted Benzenes
		2.8.1 Nomenclature of Disubstituted Benzenes
	2.9 Structure and Nomenclature of Alkynes
	End of Chapter Problems
Chapter 3 Heteroatomic Functional Groups and Organic Nomenclature
	3.1 Properties and Structure of Alcohols, Phenols, and Thiols
		3.1.1 Types of Alcohols
	3.2 Nomenclature of Alcohols
		3.2.1 Nomenclature of Difunctional Alcohols
		3.2.2 Nomenclature of Cyclic Alcohols
		3.2.3 Nomenclature of Substituted Phenols
	3.3 Nomenclature of Thiols
	3.4 Structure and Properties of Aldehydes and Ketones
	3.5 Nomenclature of Aldehydes
		3.5.1 Nomenclature of Difunctional Aldehydes
	3.6 Nomenclature of Ketones
		3.6.1 Nomenclature of Difunctional Ketones
		3.6.2 Nomenclature of Cyclic Ketones
	3.7 Structure and Properties of Carboxylic Acids
	3.8 Nomenclature of Carboxylic Acids
		3.8.1 Nomenclature of Difunctional Carboxylic Acids
		3.8.2 Nomenclature of Cyclic Carboxylic Acids
	3.9 Structure and Properties of Esters
		3.9.1 Nomenclature of Esters
		3.9.2 Nomenclature of Cyclic Esters
	3.10 Structure and Properties of Acid Chlorides
		3.10.1 Nomenclature of Acid Chlorides
		3.10.2 Nomenclature of Difunctional Acid Chlorides
	3.11 Structure and Properties of Anhydrides
		3.11.1 Nomenclature of Anhydrides
	3.12 Structure and Properties of Amines
		3.12.1 Nomenclature of Amines
		3.12.2 Nomenclature of Difunctional Amines
	3.13 Structure and Properties of Amides
		3.13.1 Nomenclature of Amides
	3.14 Structure and Properties of Nitriles
		3.14.1 Nomenclature of Nitriles
	3.15 Structure and Properties of Ethers
		3.15.1 Nomenclature of Ethers
		3.15.2 Nomenclature of Oxiranes
	3.16 An Overview of Spectroscopy and the Relationship to Functional Groups
		3.16.1 Infrared Spectroscopy
	End of Chapter Problems
Chapter 4 Alkanes, Cycloalkanes, and Alkenes: Isomers, Conformations, and Stabilities
	4.1 Introduction
	4.2 Structural Isomers
	4.3 Conformational Isomers of Alkanes
		4.3.1 Dashed/Wedge Representation of Isomers
		4.3.2 Newman Representation of Conformers
		4.3.3 Relative Energies of Conformers
	4.4 Conformational Isomers of Cycloalkanes
		4.4.1 Isomers of Cyclopropane
		4.4.2 Conformational Isomers of Cyclobutane
		4.4.3 Conformational Isomers of Cyclopentane
		4.4.4 Conformational Isomers of Cyclohexane
		4.4.5 Conformational Isomers of Monosubstituted Cyclohexane
		4.4.6 Conformational Isomers of Disubstituted Cyclohexane
	4.5 Geometric Isomers
		4.5.1 IUPAC Nomenclature of Alkene Geometric Stereoisomers
	4.6 Stability of Alkanes
	4.7 Stability of Alkenes
	4.8 Stability of Alkynes
	End of Chapter Problems
Chapter 5 Stereochemistry
	5.1 Introduction
	5.2 Chiral Stereoisomers
		5.2.1 Determination of Enantiomerism
	5.3 Significance of Chirality
		5.3.1 Molecular Chirality and Biological Action
	5.4 Nomenclature of the Absolute Configuration of Chiral Molecules
	5.5 Properties of Stereogenic Compounds
	5.6 Compounds with More Than One Stereogenic Carbon
		5.6.1 Cyclic Compounds with More Than One Stereogenic Center
	5.7 Resolution of Enantiomers
	End of Chapter Problems
Chapter 6 An Overview of the Reactions of Organic Chemistry
	6.1 Introduction
	6.2 Acid–Base Reactions
		6.2.1 Acids
		6.2.2 Bases
	6.3 Addition Reactions
	6.4 Reduction Reactions
	6.5 Oxidation Reactions
	6.6 Elimination Reactions
	6.7 Substitution Reactions
	6.8 Pericyclic Reactions
	6.9 Catalytic Coupling Reactions
	End of Chapter Problems
Chapter 7 Acid–Base Reactions in Organic Chemistry
	7.1 Introduction
	7.2 Lewis Acids and Bases
	7.3 Relative Strengths of Acids and Conjugate Bases
	7.4 Predicting the Relative Strengths of Acids and Bases
	7.5 Factors That Affect Acid and Base Strengths
		7.5.1 Electronegativity
		7.5.2 Type of Hybridized Orbitals
		7.5.3 Resonance
		7.5.4 Polarizability/Atom Size
		7.5.5 Inductive Effect
	7.6 Applications of Acid–Bases Reactions in Organic Chemistry
	End of Chapter Problems
Chapter 8 Addition Reactions Involving Alkenes and Alkynes
	8.1 Introduction
	8.2 The Mechanism for Addition Reactions Involving Alkenes
	8.3 Addition of Hydrogen Halide to Alkenes (Hydrohalogenation of Alkenes)
		8.3.1 Addition Reactions to Symmetrical Alkenes
		8.3.2 Addition Reactions to Unsymmetrical Alkenes
		8.3.3 Predicting the Major Addition Product
		8.3.4 Predicting the Stereochemistry of Addition Reaction Products
		8.3.5 Predicting the Major Addition Product – Markovnikov Rule
		8.3.6 Unexpected Hydrohalogenation Products
		8.3.7 Anti-Markovnikov Addition to Alkenes
	8.4 Addition of Halogens to Alkenes (Halogenation of Alkenes)
	8.5 Addition of Halogens and Water to Alkenes (Halohydrin Formation)
	8.6 Addition of Water to Alkenes (Hydration of Alkenes)
		8.6.1 Hydration by Oxymercuration–Demercuration
		8.6.2 Hydration by Hydroboration-Oxidation
	8.7 Addition of Carbenes to Alkenes
		8.7.1 Structure of Carbenes
		8.7.2 Reactions of Carbenes
	8.8 The Mechanism for Addition Reactions Involving Alkynes
		8.8.1 Addition of Bromine to Alkynes
		8.8.2 Addition of Hydrogen Halide to Alkynes
		8.8.3 Addition of Water to Alkynes
	8.9 Applications of Addition Reactions to Synthesis
	End of Chapter Problems
Chapter 9 Addition Reactions Involving Carbonyls and Nitriles
	9.1 Introduction
	9.2 Mechanism for Addition Reactions Involving Carbonyl Compounds
	9.3 Addition of HCN to Carbonyl Compounds
	9.4 Addition of Water to Carbonyl Compounds
		9.4.1 Reactivity of Carbonyl Compounds Toward Hydration
	9.5 Addition of Alcohols to Carbonyl Compounds
		9.5.1 Ketals and Acetals as Protection Groups
	9.6 Addition of Ylides to Carbonyl Compounds (The Wittig Reaction)
		9.6.1 Synthesis of Phosphorous Ylides
	9.7 Addition of Enolates to Carbonyl Compounds
	9.8 Addition of Amines to Carbonyl Compounds
	9.9 Mechanism for Addition Reactions Involving Imines
		9.9.1 Addition of Water to Imines
	9.10 Mechanism for Addition Reactions Involving Nitriles
		9.10.1 Addition of Water to Nitriles
	9.11 Applications of Addition Reactions to Synthesis
	End of Chapter Problems
Chapter 10 Reduction Reactions in Organic Chemistry
	10.1 Introduction
	10.2 Reducing Agents of Organic Chemistry
		10.2.1 Metal Hydrides
		10.2.2 Organometallic Compounds
		10.2.3 Dissolving Metals
		10.2.4 Hydrogen in the Presence of a Catalyst
	10.3 Reduction of C=O and C=S Containing Compounds
		10.3.1 Reduction Using NaBH4 and LiAlH4
		10.3.2 Reduction Using Organometallic Reagents
		10.3.3 Reduction Using Acetylides
		10.3.4 Reduction Using Metals
		10.3.5 Reduction Using Hydrogen with a Catalyst
		10.3.6 The Wolff Kishner Reduction
	10.4 Reduction of Imines
		10.4.1 Reduction Using NaBH4 and LiAlH4
		10.4.2 Reduction Using Hydrogen with a Catalyst
	10.5 Reduction of Oxiranes
	10.6 Reduction of Aromatic Compounds, Alkynes, and Alkenes
		10.6.1 Reduction Using Dissolving Metals
		10.6.2 Reduction Using Catalytic Hydrogenation
	End of Chapter Problems
Chapter 11 Oxidation Reactions in Organic Chemistry
	11.1 Introduction
	11.2 Oxidation
	11.3 Oxidation of Alcohols and Aldehydes
		11.3.1 Oxidation Using Potassium Permanganate (KMnO4)
		11.3.2 Oxidation Using Chromic Acid (H2CrO4)
		11.3.3 Swern Oxidation
		11.3.4 Dess-Martin Oxidation
		11.3.5 Oxidation Using Pyridinium Chlorochromate
		11.3.6 Oxidation Using Silver Ions
		11.3.7 Oxidation Using Nitrous Acid
		11.3.8 Oxidation Using Periodic Acid
	11.4 Oxidation of Alkenes Without Bond Cleavage
		11.4.1 Epoxidation of Alkenes
			11.4.1.1 Reactions of Epoxides
		11.4.2 Oxidation of Alkenes with KMnO4
		11.4.3 Oxidation of Alkenes with OsO4
	11.5 Oxidation of Alkenes with Bond Cleavage
		11.5.1 Oxidation of Alkenes with KMnO4 at Elevated Temperatures
		11.5.2 Ozonolysis of Alkenes
	11.6 Applications of Oxidation Reactions of Alkenes
	11.7 Oxidation of Alkynes
	11.8 Oxidation of Aromatic Compounds
	11.9 Autooxidation of Ethers and Alkenes
	11.10 Applications of Oxidation Reactions to Synthesis
	End of Chapter Problems
Chapter 12 Elimination Reactions of Organic Chemistry
	12.1 Introduction
	12.2 Mechanisms of Elimination Reactions
		12.2.1 Elimination Bimolecular (E2) Reaction Mechanism
		12.2.2 Elimination Unimolecular (E1) Reaction Mechanism
		12.2.3 Elimination Unimolecular – Conjugate Base (E1cB) Reaction Mechanism
	12.3 Elimination of Hydrogen and Halide (Dehydrohalogenation)
	12.4 Elimination of Water (Dehydration)
		12.4.1 Dehydration Products
		12.4.2 Carbocation Rearrangement
		12.4.3 Pinacol Rearrangement
	12.5 Applications of Elimination Reactions to Synthesis
	End of Chapter Problems
Chapter 13 Spectroscopy Revisited, A More Detailed Examination
	13.1 Introduction
	13.2 The Electromagnetic Spectrum
		13.2.1 Types of Spectroscopy Used in Organic Chemistry
	13.3 UV-Vis Spectroscopy and Conjugated Systems
	13.4 Infrared Spectroscopy
	13.5 Mass Spectrometry
	13.6 Nuclear Magnetic Resonance (NMR) Spectroscopy
		13.6.1 Theory of Nuclear Magnetic Resonance Spectroscopy
		13.6.2 The NMR Spectrometer
		13.6.3 Magnetic Shielding
		13.6.4 The Chemical Shift, the Scale of the NMR Spectroscopy
		13.6.5 Significance of Different Signals and Area Under Each Signal
		13.6.6 Splitting of Signals
		13.6.7 Carbon-13 NMR (13C NMR)
		13.6.8 Carbon-13 Chemical Shifts and Coupling
	End of Chapter Problems
Chapter 14 Free Radical Substitution Reactions Involving Alkanes
	14.1 Introduction
	14.2 Types of Alkanes and Alkyl Halides
		14.2.1 Classifications of Hydrocarbons
		14.2.2 Bond Dissociation Energies of Hydrocarbons
		14.2.3 Structure and Stability of Radicals
	14.3 Chlorination of Alkanes
		14.3.1 Mechanism for the Chlorination of Methane
		14.3.2 Chlorination of Other Alkanes
	14.4 Bromination of Alkanes
		14.4.1 Bromination of Propane and Other Alkanes
	14.5 Applications of Free Radical Substitution Reactions
	14.6 Free Radical Inhibitors
	14.7 Environmental Impact of Organohalides and Free Radicals
	End of Chapter Problems
Chapter 15 Nucleophilic Substitution Reactions at sp3 Carbons
	15.1 Introduction
	15.2 The Electrophile
	15.3 The Leaving Group
		15.3.1 Converting Amines to Good Leaving Groups
		15.3.2 Converting the OH of Alcohols to a Good Leaving Group in an Acidic Medium
		15.3.3 Converting the OH of Alcohols to a Good Leaving Group Using Phosphorous Tribromide
		15.3.4 Converting the OH of Alcohols to a Good Leaving Group Using Thionyl Chloride
		15.3.5 Converting the OH of Alcohols to a Good Leaving Group Using Sulfonyl Chlorides
	15.4 The Nucleophile
	15.5 Nucleophilic Substitution Reactions
		15.5.1 Mechanisms of Nucleophilic Substitution Reactions
	15.6 Bimolecular Substitution Reaction Mechanism (SN2 Mechanism)
		15.6.1 The Electrophile of SN2 Reactions
		15.6.2 The Nucleophile of SN2 Reactions
		15.6.3 The Solvents of SN2 Reactions
		15.6.4 Stereochemistry of the Products of SN2 Reactions
		15.6.5 Intramolecular SN2 Reactions
	15.7 Unimolecular Substitution Reaction Mechanism (SN1 Mechanism)
		15.7.1 The Nucleophile and Solvents of SN1 Reactions
		15.7.2 Stereochemistry of the Products of SN1 Reactions
		15.7.3 The Electrophile of SN1 Reactions
	15.8 Applications of Nucleophilic Substitution Reactions – Synthesis
		15.8.1 Synthesis of Ethers
		15.8.2 Synthesis of Nitriles
		15.8.3 Synthesis of Silyl Ethers
		15.8.4 Synthesis of Alkynes
		15.8.5 Synthesis of ‐Substituted Carbonyl Compounds
	End of Chapter Problems
Chapter 16 Nucleophilic Substitution Reactions at Acyl Carbons
	16.1 Introduction
	16.2 Mechanism for Acyl Substitution
		16.2.1 The Leaving Group of Acyl Substitution Reactions
		16.2.2 Reactivity of Electrophiles of Acyl Substitution Reactions
		16.2.3 Nucleophiles of Acyl Substitution Reactions
	16.3 Substitution Reactions Involving Acid Chlorides
		16.3.1 Substitution Reactions Involving Acid Chlorides and Water
		16.3.2 Substitution Reactions Involving Acid Chlorides and Alcohols
		16.3.3 Substitution Reactions Involving Acid Chlorides and Ammonia and Amines
		16.3.4 Substitution Reactions Involving Acid Chlorides and Carboxylate Salts
		16.3.5 Substitution Reactions Involving Acid Chlorides and Soft Organometallic Reagents
		16.3.6 Substitution Reactions of Acid Chlorides with Hard Organometallic Reagents
		16.3.7 Substitution Reactions of Acid Chlorides with Soft Metal Hydrides Reagents
		16.3.8 Substitution Reactions of Acid Chlorides with Hard Metal Hydrides Reagents
	16.4 Substitution Reactions Involving Anhydrides
		16.4.1 Substitution Reactions of Anhydrides with Water
		16.4.2 Substitution Reactions of Anhydrides with Alcohols
		16.4.3 Substitution Reactions of Anhydrides with Ammonia and Amines
		16.4.4 Substitution Reactions of Anhydrides with Carboxylate Salts
		16.4.5 Substitution Reactions of Anhydrides with Soft Organometallic Reagents
		16.4.6 Substitution Reactions of Anhydrides with Hard Organometallic Reagents
		16.4.7 Substitution Reactions of Anhydrides with Soft Metallic Hydrides
		16.4.8 Substitution Reactions of Anhydrides with Hard Metallic Hydrides
	16.5 Substitution Reactions Involving Esters
		16.5.1 Substitution Reactions of Esters with Water
		16.5.2 Substitution Reactions of Esters with Alcohols
		16.5.3 Substitution Reactions of Esters with Ammonia and Amines
		16.5.4 Substitution Reactions of Esters with Soft Organometallic Reagents
		16.5.5 Substitution Reactions of Esters with Hard Organometallic Reagents
		16.5.6 Substitution Reactions of Esters with Soft and Hard Metallic Hydrides
		16.5.7 Substitution Reactions of Esters with Enolates of Esters
	16.6 Substitution Reactions Involving Amides
		16.6.1 Substitution Reactions of Amides with Water
		16.6.2 Substitution Reactions of Amides with Hard Metallic Hydrides
	16.7 Substitution Reactions Involving Carboxylic Acids
		16.7.1 Substitution Reactions of Carboxylic Acids with Alcohols
		16.7.2 Substitution Reactions of Carboxylic Acid with Ammonia and Amines
		16.7.3 Substitution Reactions of Carboxylic Acids with Hard Metallic Hydrides
	16.8 Substitution Reactions Involving Oxalyl Chloride
	16.9 Substitution Reactions Involving Sulfur Containing Compounds
	16.10 Applications of Acyl Substitution Reactions
		16.10.1 Preparation of Esters
		16.10.2 Preparations of Amides
	End of Chapter Problems
Chapter 17 Aromaticity and Aromatic Substitution Reactions
	17.1 Introduction
	17.2 Structure and Properties of Benzene
	17.3 Nomenclature of Substituted Benzene
		17.3.1 Nomenclature of Monosubstituted Benzenes
		17.3.2 Nomenclature of Di‐Substituted Benzenes
	17.4 Stability of Benzene
	17.5 Characteristics of Aromatic Compounds
		17.5.1 Carbocyclic Compounds and Ions
		17.5.2 Polycyclic Compounds
		17.5.3 Heterocyclic Compounds
	17.6 Electrophilic Aromatic Substitution Reactions of Benzene
		17.6.1 Substitution Reactions Involving Nitronium Ion
		17.6.2 Substitution Reactions Involving the Halogen Cation
		17.6.3 Substitution Reactions Involving Carbocations
		17.6.4 Substitution Reactions Involving Acyl Cations
		17.6.5 Substitution Reactions Involving Sulfonium Ion
	17.7 Electrophilic Aromatic Substitution Reactions of Substituted Benzene
		17.7.1 Electron Activators for Electrophilic Aromatic Substitution Reactions
		17.7.2 Electron Deactivators for Electrophilic Aromatic Substitution Reactions
		17.7.3 Substitution Involving Disubstituted Benzenes
	17.8 Applications – Synthesis of Substituted Benzene Compounds
	17.9 Electrophilic Substitution Reactions of Polycyclic Aromatic Compounds
	17.10 Electrophilic Substitution Reactions of Pyrrole
	17.11 Electrophilic Substitution Reactions of Pyridine
	17.12 Nucleophilic Aromatic Substitution
		17.12.1 Nucleophilic Aromatic Substitution Involving Substituted Benzene
		17.12.2 Nucleophilic Aromatic Substitution Involving Substituted Pyridine
	End of Chapter Problems
Chapter 18 Conjugated Systems and Pericyclic Reactions
	18.1 Conjugated Systems
		18.1.1 Stability of Conjugated Alkenes
	18.2 Pericyclic Reactions
		18.2.1 Cycloaddition Reactions
			18.2.1.1 Cycloaddition Reactions [2+2]
			18.2.1.2 Cycloaddition Reactions [4+2]
		18.2.2 Electrocyclic Reactions
		18.2.3 Sigmatropic Reactions
	End of Chapter Problems
Chapter 19 Catalytic Carbon–Carbon Coupling Reactions
	19.1 Introduction
	19.2 Reactions of Transition Metal Complexes
		19.2.1 Oxidative Addition Reactions
		19.2.2 Transmetallation Reactions
		19.2.3 Ligand Migratory Insertion Reactions
		19.2.4 β-Elimination Reactions
		19.2.5 Reductive Elimination Reactions
	19.3 Palladium-Catalyzed Coupling Reactions
		19.3.1 The Heck Reaction
		19.3.2 The Suzuki Reaction
		19.3.3 The Stille Coupling Reaction
		19.3.4 The Negishi Coupling Reaction
	End of Chapter Problems
Chapter 20 Synthetic Polymers and Biopolymers
	20.1 Introduction
	20.2 Cationic Polymerization of Alkenes
		20.2.1 Cationic Polymerization of Isobutene
		20.2.2 Cationic Polymerization of Styrene
	20.3 Anionic Polymerization of Alkenes
		20.3.1 Anionic Polymerization of Vinylidene Cyanide
	20.4 Free Radical Polymerization of Alkenes
		20.4.1 Free Radical Polymerization of Isobutylene
	20.5 Copolymerization of Alkenes
		20.5.1 Cationic Copolymerization
		20.5.2 Epoxy Resin Copolymers
	20.6 Properties of Polymers
		20.6.1 Solubility of Polymers
		20.6.2 Thermal Properties of Polymers
	20.7 Biopolymers
	20.8 Amino Acids, Monomers of Peptides and Proteins
	20.9 Acid–Base Properties of Amino Acids
	20.10 Synthesis of -Amino Acids
		20.10.1 Synthesis of -Amino Acids Using the Strecker Synthesis
		20.10.2 Synthesis of -Amino Acids Using Reductive Amination
		20.10.3 Synthesis of -Amino Acids Using Hell Volhard Zelinsky Reaction
		20.10.4 Synthesis of -Amino Acids Using the Gabriel Malolic Ester Synthesis
	20.11 Reactions of -Amino Acids
		20.11.1 Protection–Deprotection of the Amino Functionality
		20.11.2 Reactions of the Carboxylic Acid Functionality
		20.11.3 Reaction of -Amino Acids to Form Dipeptides
		20.11.4 Reaction of -Amino Acids With Ninhydrin
	20.12 Primary Structure and Properties of Peptides
		20.12.1 Identification of Amino Acids of Peptides
		20.12.2 Identification of the Amino Acid Sequence
	20.13 Secondary Structure of Proteins
	20.14 Monosaccharides, Monomers of Carbohydrates
	20.15 Reactions of Monosaccharides
		20.15.1 Hemiacetal Formation Involving Monosaccharides
		20.15.2 Base-catalyzed Epimerization of Monosaccharides
		20.15.3 Enediol Rearrangement of Monosaccharides
		20.15.4 Oxidation of Monosaccharides with Silver Ions
		20.15.5 Oxidation of Monosaccharides with Nitric Acid
		20.15.6 Oxidation of Monosaccharides with Periodic Acid
		20.15.7 Reduction of Monosaccharides
		20.15.8 Ester Formation of Monosaccharides
		20.15.9 Ether Formation of Monosaccharides
		20.15.10 Intermolecular Acetal Formation Involving Monosaccharides
	20.16 Disaccharides and Polysaccharides
	20.17 N-Glycosides and Amino Sugars
	20.18 Lipids
	20.19 Properties and Reactions of Waxes
	20.20 Properties and Reactions of Triglycerides
		20.20.1 Saponification (Hydrolysis) of Triglycerides
		20.20.2 Reduction of Triglycerides
		20.20.3 Transesterification of Triglycerides
	20.21 Properties and Reactions of Phospholipids
	20.22 Structure and Properties of Steroids, Prostaglandins, and Terpenes
	End of Chapter Problems
Index
EULA




نظرات کاربران