دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Ajit S. Narang (editor), Ram I. Mahato (editor) سری: ISBN (شابک) : 1032010398, 9781032010397 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 522 [542] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت تبدیل فایل کتاب Organ Specific Drug Delivery and Targeting to the Lungs به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحویل داروی خاص اعضای بدن و هدف قرار دادن آنها به ریه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارسال داروی خاص و هدفگیری به ریهها اطلاعات بهروزی را در زمینه چند رشتهای مهندسی ذرات و دارورسانی به ریهها، از جمله پیشرفتهای فناوری نانو، ارائه میدهد. متن یک تمرکز عملگرایانه منحصر به فرد با مطالعات موردی ارائه می دهد که به ترجمه درک علمی به اجرای عملی کمک می کند. علاوه بر برجسته کردن مطالعات موردی موفق، توصیههای عملی در مورد مراقبتها، محدودیتها و مرزهای «بستن کتاب» در مراحل آزمایش و توسعه ارائه میدهد.
ویژگیهای اضافی شامل :
با تمرکز استراتژیک بر آنچه در طول توسعه محصول جدید اهمیت دارد، این کتاب راهنمای درک و پیمایش جدید ارائه میکند. کشف و توسعه دارو برای اهداف ریوی.
Organ Specific Drug Delivery and Targeting to the Lungs provides up to date information on the multidisciplinary field of particle engineering and drug delivery to the lungs, including advancements of nanotechnology. The text presents a unique, pragmatic focus with case studies, that help translate scientific understanding to practical implementation. In addition to highlighting the successful case studies, it also offers practical advice on watchouts, limitations, and ‘bookend’ boundaries involved in the stages of testing and development.
Additional Features Include:
With the strategic focus on what matters during new product development, this book provides a guide to understanding and navigating new drug discovery and development for lung targets.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments About the Authors List of Contributors Section I In-Vitro and Ex-Vivo Methods Chapter 1 Estimating Clinically Relevant Measures of Inhaled Pharmaceutical Aerosol Performance with Advanced In Vitro and In Silico Methods 1.1 Introduction 1.1.1 Clinically Relevant Measures 1.1.2 Pharmacopeial Measures of Inhaler Performance 1.1.3 Defining Test Systems 1.2 In Vitro Methods 1.2.1 Airway Geometry 1.2.1.1 Realistic and semi-realistic extrathoracic geometries 1.2.1.2 Idealized extrathoracic geometries 1.2.1.3 In vitro measures of thoracic deposition 1.2.2 Inhalation Maneuver 1.2.2.1 pMDIs and SMIs 1.2.2.2 DPIs 1.2.2.3 Nebulizers, spacers, valved holding chambers, and facemasks 1.2.3 Hygroscopic Behavior 1.2.4 Real-World Use 1.2.4.1 pMDIs 1.2.4.2 DPIs 1.2.4.3 Inhaler orientation and other aspects of patient technique 1.3 Deposition Models 1.3.1 Extrathoracic Deposition 1.3.2 Thoracic Deposition 1.4 Pharmacokinetic Models 1.4.1 Characterizing Disposition 1.4.1.1 Modeling dissolution 1.4.1.2 Solubility and permeability 1.4.1.3 Lung-relevant dissolution testing 1.4.2 Considering Health or Disease 1.5 Moving Towards Clinical Relevance References Chapter 2 In Vitro Assessment of Drug Release, Dissolution, and Absorption in the Lung 2.1 Introduction 2.2 Factors Affecting Deposition and Bioavailability 2.2.1 Factors Affecting Bioavailability 2.2.1.1 Mucociliary clearance 2.2.1.2 Alveolar clearance 2.2.1.3 Enzymatic degradation 2.2.1.4 Local vs systemic delivery 2.2.2 Factors Affecting Deposition 2.2.2.1 Formulation factors 2.2.2.2 Physiological factors 2.3 In Vitro Performance Testing for DPI Products 2.3.1 Cascade Impactors 2.3.2 Single-Stage Impactors 2.3.3 Multi-Stage Impactors 2.4 Drug Release 2.5 In Vitro Dissolution 2.5.1 Traditional Dissolution Studies 2.5.2 Flow-Through Cell 2.5.3 Membrane-Based Cell Systems 2.6 Assessment of Absorption and Deposition of Formulation for Inhalation 2.6.1 Calu-3 Cell Monolayer Model 2.6.2 Human Alveolar Cell Monolayer Models 2.6.3 Human Primary ALI-Cultured 3D Lung Cell Barrier Models 2.6.4 Stem Cell-Derived Lung Epithelial Cells 2.6.5 “Lung-on-a-Chip” Model 2.7 Conclusion and Future Perspectives References Chapter 3 Lung-on-a-Chip and Lung Organoid Models 3.1 Introduction 3.2 Lung-on-a-Chip and Its Application in Drug Discovery and Development 3.2.1 Prevalence of Pulmonary Diseases 3.2.2 Establishment of Air-Liquid Interface Model 3.2.3 Evolution in Lung-on-a-Chip Fabrication and Complexity 3.2.3.1 Inception of microfluidics-based lung-on-a-chip model 3.2.3.2 Challenges and further advancements in lung-on-a-chip fabrication, including 3D bioprinting 3.2.4 Application of Lung-on-a-Chip in Modeling of Lung Cancer Growth 3.2.5 Application of Lung-on-a-Chip in Modeling of Responses to Aerosolized Drugs and Nanoparticle Treatment 3.2.6 Application of Lung-on-a-Chip in Modeling of Pulmonary Edema and Lung Inflammation 3.2.7 Application of Lung-on-a-Chip in Modeling of Lung Infection and Identification of Antiviral Therapeutics 3.2.8 Application of Multi-Organ-Chip in Pharmacokinetics (PK) and Pharmacodynamics (PD) Modeling 3.2.9 Application of Lung-on-a-Chip in Toxicology Studies 3.2.10 Further Challenges and Future Directions in Lung-on-a-Chip Development 3.3 Application of Lung Organoids in Disease Modeling and Drug Targeting 3.3.1 Human Lung Organoids Derived from Primary Human Lung Epithelium Cells and Human Bronchioalveolar Stem Cells 3.3.2 Application of Patient-Derived Lung Cancer Organoids in Testing and Screening Anticancer Drugs 3.3.3 Application of Lung Organoids in Modeling Lung Infections and Antiviral Drugs 3.3.4 Application of Lung Organoid in Toxicological Studies 3.4 Concluding Remarks Competing Interests References Chapter 4 Interaction between Inhalable Nanomedicines and Pulmonary Surfactant 4.1 Introduction 4.2 Basic Information of Pulmonary Surfactant 4.2.1 Physiological Functions 4.2.2 Components 4.2.3 Biosynthesis and Biodegradation 4.3 Interaction between Inhalable Nanomedicines and Pulmonary Surfactant: A Biomolecular Corona-Associated Process 4.3.1 Inevitableness of Nanomedicine-Pulmonary Surfactant Interaction 4.3.2 Connection between the Interaction with Biomolecular Corona 4.3.3 Categories of the Interaction 4.4 The Impact of Interaction upon Nanomedicines 4.4.1 Hydrophobicity 4.4.2 Surface Charge 4.4.3 Colloidal Stability 4.4.4 Pulmonary Surfactant Layer Permeability 4.4.5 Targeting Region 4.4.6 Cellular Uptake 4.5 The Impact of Interaction upon Pulmonary Surfactant 4.5.1 Biosynthesis 4.5.2 Components 4.5.3 Surface Activity 4.6 Characterization Methods for the Interaction 4.6.1 Morphology 4.6.2 Biomolecules Separation and Identification 4.6.3 Conformational Change 4.6.4 Surface Tension 4.6.5 Kinetics and Thermodynamics 4.6.6 In-silico Interaction Model 4.7 Implications for Pulmonary Drug Delivery of Nanomedicines 4.7.1 Impact of the Interaction on Drug Delivery 4.7.2 Manipulation of the Interaction 4.7.3 Application of Pulmonary Surfactant in Nanomedicine Design 4.8 Concluding Remarks and Outlook 4.9 Acknowledgment 4.10 Appendices 4.10.1 Representative Cases Summary of the Interaction 4.10.2 Summary of Characterization Methods for the Interaction References Section II Particle Design Understanding Chapter 5 Particle Engineering for Pulmonary Drug Delivery 5.1 Introduction 5.2 Interparticle Interactions in Aerosol-Based Delivery Systems 5.3 Particle Properties and Interfaces 5.3.1 Size 5.3.2 Shape 5.3.3 Solid-State Properties 5.3.4 Surface Properties of Solids 5.3.4.1 Surface energy 5.3.4.2 Surface roughness 5.3.4.3 Surface charge 5.3.4.4 Surface moisture 5.4 Particle Engineering Approaches 5.4.1 Conventional Approaches 5.4.1.1 Particle sizing 5.4.1.2 Spray drying 5.4.1.3 Crystallization 5.4.2 Novel Advanced Approaches 5.4.2.1 Supercritical fluid technologies 5.4.2.2 Surface modification through dry coating 5.4.2.3 Nanotechnology approaches 5.5 Outlook and Future Perspectives References Chapter 6 Particle Architectonics for Pulmonary Drug Delivery 6.1 Introduction 6.2 Fate of Drug Particles in the Lung 6.3 Down-Sizing of Solid Particles 6.4 Manipulation of Particle Morphology 6.5 Miscibility of Spray-Dried Components 6.6 Nanoparticle-Based Architectonics 6.7 Lipid-Based Architectonics 6.8 Excipients for Pulmonary Route 6.9 Concluding Remarks References Chapter 7 Engineered Particles for Aerosolization and Lung Deposition 7.1 Introduction 7.2 Particle Size 7.3 Morphologically Engineered Particles 7.3.1 Elongated Particles 7.3.2 Porous and Wrinkled Particles 7.3.3 Spikey (Pollen-like) Particles 7.3.4 Other Shaped Particles (PRINT Technology) 7.4 Chemically Engineered Particles 7.4.1 Co-Formulation with Hydrophobic Amino Acids 7.4.2 Co-Formulation with Metal Stearates 7.4.3 Co-Formulation of APIs 7.5 Production Methods 7.5.1 Methods Used in Commercial Inhalation Products 7.5.1.1 Milling 7.5.1.2 Spray drying 7.5.2 Methods Used in Inhalation Powders under Development 7.5.2.1 Spray freeze drying 7.5.2.2 Other methods 7.5.2.3 Newer technologies 7.6 Characterization Techniques 7.6.1 Particle Morphology and Roughness 7.6.1.1 Specific surface area (SSA) 7.6.1.2 Fractal dimension analysis 7.6.1.3 Scanning electron microscopy (SEM) 7.6.1.4 Laser diffraction 7.6.1.5 Atomic force microscopy (AFM) 7.6.1.6 White-light interferometry 7.6.2 Chemical Composition and Distribution 7.6.2.1 X-ray photoelectron spectroscopy (XPS) 7.6.2.2 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 7.6.2.3 AFM-based techniques 7.6.2.4 Fourier transform infrared spectroscopy (FTIR) 7.6.3 Electrostatic Charge 7.6.3.1 Electrical low-pressure impaction (ELPI) 7.6.3.2 Bipolar charge analyzer 7.6.4 Other Commonly Used Bulk Characterization Methods 7.7 Effect on Lung Deposition References Section III Novel Technologies Chapter 8 Recent Advances in Inhalable Nanomedicine for Lung Cancer Therapy 8.1 Cancer Epidemiology 8.2 Treatment Strategies 8.3 Challenges Facing Localized Drug Delivery 8.4 Aerosol Drug Delivery Devices 8.5 Applications of Inhalable Nanoparticle-Based Drug for Lung Cancer 8.5.1 Inhalable Nebulized Nanosuspension 8.5.2 Inhalable Protein Nanocomposites 8.5.3 Inhalable Lipid Nanocomposites 8.5.4 Inhalable Drug-Polymer Nano-Conjugates 8.5.5 Inhalable Nano-in-Porous Microparticles 8.5.6 Inhalable Flocculated Nano-Agglomerates 8.5.7 Inhalable Mucoadhesive Nanoparticles 8.5.8 Inhalable Hierarchical Multi-Stage Target Nanoparticles 8.5.9 Inhalable Lung Surfactant-Mimic Nanocarriers 8.5.10 Inhalable Gene Nanocarriers 8.5.11 Inhalable Nano-Theranostics 8.6 Challenges and Limitations 8.7 Conclusion and Future Directions 8.8 Financial and Competing Interest Disclosure References Chapter 9 Thin-Film Freeze-Drying Process for Versatile Particles for Inhalation Drug Delivery 9.1 Introduction 9.2 Applications of TFFD to Pulmonary Delivery 9.2.1 Brittle-Matrix Powders Made by TFFD Are Suitable for Pulmonary Delivery via Nebulizers, Pressurized Metered Dose Inhalers, and Dry Powder Inhalers 9.2.1.1 Inhaled drug delivery via nebulizers 9.2.1.2 Inhaled drug delivery via pressurized metered dose inhalers (pMDI) 9.2.1.3 Inhaled drug delivery via dry powder inhalers (DPI) 9.2.2 Surface Texture Modification to Improve Aerosolization by Nanocrystalline Aggregates 9.2.3 TFFD Production of Homogeneous Drug Particles in Powder 9.2.4 Enhancement of Drug Absorption and Bioavailability in the Lungs Using TFFD Amorphous Drug Powders 9.2.5 TFFD Application for Biologics as Dry Powders for Inhalation 9.3 Processing Design Spaces of TFFD Process Influence the Properties of the Formulations 9.3.1 Effect of Excipients on Physicochemical and Aerodynamic Properties of TFFD Powders 9.3.1.1 Lactose 9.3.1.2 Mannitol 9.3.1.3 Trehalose 9.3.1.4 Sucrose 9.3.1.5 Leucine 9.3.2 Solid Loading and Aerodynamic Properties of TFFD Formulations 9.3.3 Drug Loading Affects Particle Morphology and Aerosolization 9.3.4 Processing Temperature and Supercooling 9.3.5 Effect of Solvents on Morphology and Aerosol Properties 9.4 Delivery of TFFD powders to the lung as DPI relies on loading dose, device, and flow rates 9.4.1 Loading Dose 9.4.2 Device and Flow Rates 9.5 Conclusion Conflicts of Interest References Chapter 10 Nanoparticles as Specific Drug Carriers 10.1 Introduction 10.2 Polymeric Nanoparticles 10.2.1 Natural Polymers 10.2.2 Synthetic Polymers 10.3 Lipid Nanoparticles 10.4 Cellulose Nanocrystals 10.5 Carbon Nanoparticles 10.5.1 Fullerene 10.5.2 Nanodiamond 10.5.3 Graphene 10.5.4 Carbon Nanotube 10.5.5 Final Considerations on the Use of Carbon Nanoparticles 10.6 Inorganic Nanoparticles 10.6.1 Silica Nanoparticles 10.6.2 Calcium Phosphate Nanoparticles 10.7 Metallic and Magnetic Nanoparticles 10.7.1 Gold Nanoparticles 10.7.2 Silver Nanoparticles 10.7.3 Zinc Oxide Nanoparticles 10.7.4 Magnetic Nanoparticles 10.8 Conclusions and Future Perspectives Bibliography Section IV Advancing Established Technologies Chapter 11 Surface Modification of Micronized Drug Particles for Aerosolization 11.1 Introduction 11.2 Mechanism of Particle Deposition in the Lungs 11.2.1 Primary Mechanisms of Particle Deposition 11.2.1.1 Inertial impaction 11.2.1.2 Gravitational sedimentation 11.2.1.3 Other deposition mechanisms 11.3 Particle Engineering for Lung Delivery 11.3.1 Sugar Carrier-Based Surface Engineering 11.3.2 Amino Acid-Based Surface Engineering 11.3.3 Cyclodextrin-Based Surface Engineering 11.3.4 Miscellaneous 11.4 Conclusions and Future Perspectives Conflict of Interest Acknowledgement References Chapter 12 Spray Dried Particles for Inhalation 12.1 Introduction 12.2 Spray Drying Technology 12.2.1 Influence of Processing Parameters 12.2.1.1 Inlet temperature 12.2.1.2 Outlet temperature 12.2.1.3 Feed concentration and viscosity 12.2.1.4 Miscellaneous properties 12.3 Spray Dried Particles for Inhalation 12.3.1 Excipients 12.3.2 Active Pharmaceutical Ingredients 12.3.3 siRNA 12.3.4 Vaccines 12.4 Lab Scale vs Industrial Scale 12.5 Inhalation Devices 12.6 Commercial Products and Market 12.7 Challenges and Future Perspectives 12.8 Conclusions Acknowledgements References Chapter 13 Inhalation Aerosol Phospholipid Particles for Targeted Lung Delivery 13.1 Introduction 13.2 Lung Anatomy and Physiology 13.3 Lung Lining Fluid and Endogenous Phospholipids 13.4 Lung Surfactant Replacement Therapy 13.5 Phospholipids in Inhalation Formulations 13.6 Phospholipid-Based Drug Delivery Systems 13.6.1 Liposomes for Pulmonary Delivery 13.6.2 Proliposomes for Pulmonary Delivery 13.7 Engineering of Phospholipid Microparticulate Dry Powder Formulations 13.7.1 Spray Drying 13.7.2 Spray Freeze-Drying 13.7.3 Freeze Drying 13.7.4 Supercritical Anti-Solvent Technique 13.8 Conclusion References Chapter 14 Nebulizers 14.1 Introduction 14.2 Conditions Treated with Nebulizer Therapy 14.3 Operating Principles 14.3.1 Jet Nebulizers 14.3.1.1 Continuous output 14.3.1.2 Breath-enhanced 14.3.1.3 Breath-actuated 14.3.2 Ultrasonic Nebulizers 14.3.3 Mesh Nebulizers 14.4 Smart Nebulizers 14.5 Patient Factors Affecting Drug Delivery from Nebulizers 14.6 Drug Delivery in Patients Receiving Ventilatory Support 14.6.1 Heated High-Flow Nasal Cannula 14.6.2 Noninvasive Mechanical Ventilation 14.6.3 Tracheostomy 14.6.4 Invasive Mechanical Ventilation 14.7 Precautions for Use of Nebulizers in the Era of COVID-19 14.8 Unmet Needs References Chapter 15 Protein and Peptide Delivery to the Lung via Inhalation 15.1 Introduction 15.2 Challenges in the Development of Protein Therapeutics for Pulmonary Delivery 15.2.1 Airway Epithelium 15.2.2 Alveolar Epithelium 15.2.3 Mucociliary Clearance 15.2.4 Dissolution Rate and Enzyme Degradation in the Lung Fluid 15.3 Mechanism for Pulmonary Delivery 15.3.1 Aerosol Deposition Mechanisms 15.3.1.1 Impaction (inertial deposition) 15.3.1.2 Sedimentation (gravitational deposition) 15.3.1.3 Diffusion 15.3.1.4 Interception 15.3.1.5 Electrostatic precipitation 15.3.2 Mechanism of Protein Release from Particles 15.3.2.1 Diffusion-controlled release 15.3.2.2 Solvent-controlled release 15.3.2.3 Degradation-controlled release 15.3.2.4 Permeation controlled release 15.3.2.5 Stimuli-controlled release 15.3.3 Manufacturing Techniques of Making Particulate Matter for Lung Delivery 15.3.3.1 Nebulizers 15.3.3.2 Pressurized metered-dose inhalers (pMDIs) 15.3.3.3 Dry powder inhalers (DPIs) 15.3.3.4 Soft mist inhaler (SMI) 15.3.4 Types of Carriers Used for Pulmonary Delivery 15.3.4.1 Lactose and other Sugars 15.3.4.2 Lipids 15.3.4.3 Biodegradable polymers 15.4 Experimental Models for Testing Inhaled Particle Transport in Lung Airways 15.4.1 Cell Culture Models 15.4.2 Ex Vivo Isolated Perfused Lung Model 15.4.3 Preclinical Model 15.5 Peptide and Protein in Pulmonary Delivery 15.5.1 Suitable Conditions for Pulmonary Delivery 15.5.1.1 Diabetes mellitus 15.5.1.2 Hormone disorder 15.5.1.3 Osteoporosis 15.5.1.4 Multiple sclerosis 15.5.2 For Respiratory Diseases 15.5.2.1 Infection for Viral Infections 15.5.2.2 Cystic Fibrosis 15.5.3 Immunotherapy 15.6 Approaches to Enhance the Inhalation and Lung Deposition of Protein Therapeutics 15.7 Concluding Remarks References Chapter 16 Exosomes-Based Drug Delivery for Lung Cancer Treatment 16.1 Introduction 16.2 Extracellular Vesicles 16.3 Exosomes 16.3.1 Exosomes as Drug Carrier 16.3.2 Exosomes-Based Drug Delivery for Lung Cancer 16.4 Challenges in Advancing Exosome-Based Therapeutics 16.5 Conclusions Acknowledgements Conflict of interest References Index