دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Howard D. Curtis Ph.D. Purdue University Professor
سری: Aerospace Engineering
ISBN (شابک) : 008102133X, 9780081021330
ناشر: Butterworth-Heinemann
سال نشر: 2019
تعداد صفحات: 946
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب Orbital Mechanics for Engineering Students به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک مداری برای دانشجویان مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مکانیک مداری برای دانشجویان مهندسی، ویرایش چهارم، یک متن کلیدی برای دانشجویان مهندسی هوافضا است. در حالی که این آخرین نسخه با محتوای جدید بهروزرسانی شده و شامل نمونههایی از مسائل است، رویکرد آموزش بهمثال خود را نیز حفظ میکند که بر رویههای تحلیلی، الگوریتمهای پیادهسازی شده توسط رایانه و جامعترین بسته پشتیبانی موجود، شامل راهحلهای کاملاً کار شده، سخنرانی PPT تأکید دارد. اسلایدها و انیمیشن های موضوعات انتخاب شده. این کتاب بسیار مصور و کاملاً با الگوریتمهای متلب قابل دانلود برای پروژه و کارهای عملی پشتیبانی میشود، همه ابزارهای مورد نیاز برای درک کامل موضوع را فراهم میکند.
Orbital Mechanics for Engineering Students, Fourth Edition, is a key text for students of aerospace engineering. While this latest edition has been updated with new content and included sample problems, it also retains its teach-by-example approach that emphasizes analytical procedures, computer-implemented algorithms, and the most comprehensive support package available, including fully worked solutions, PPT lecture slides, and animations of selected topics. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject.
Cover Orbital Mechanics for Engineering Students Copyright Dedication Preface Supplements to the text Acknowledgements 1 Dynamics of point masses Introduction Vectors Kinematics Mass, force, and Newtons law of gravitation Newtons law of motion Time derivatives of moving vectors Relative motion Numerical integration Runge-Kutta methods Heuns predictor-corrector method Runge-Kutta with variable step size Problems References 2 The two-body problem Introduction Equations of motion in an inertial frame Equations of relative motion Angular momentum and the orbit formulas The energy law Circular orbits (e=0) Elliptical orbits (01) Perifocal frame The Lagrange coefficients Circular restricted three-body problem Lagrange points Jacobi constant Problems References 3 Orbital position as a function of time Introduction Time since periapsis Circular orbits (e=0) Elliptical orbits (e<1) Parabolic trajectories (e=1) Hyperbolic trajectories (e>1) Universal variables Problems References 4 Orbits in three dimensions Introduction Geocentric right ascension-declination frame State vector and the geocentric equatorial frame Orbital elements and the state vector Coordinate transformation Transformation between geocentric equatorial and perifocal frames Effects of the earths oblateness Ground tracks Problems Reference 5 Preliminary orbit determination Introduction Gibbs method of orbit determination from three position vectors Lamberts problem Sidereal time Topocentric coordinate system Topocentric equatorial coordinate system Topocentric horizon coordinate system Orbit determination from angle and range measurements Angles-only preliminary orbit determination Gauss method of preliminary orbit determination Problems References 6 Orbital maneuvers Introduction Impulsive maneuvers Hohmann transfer Bielliptic Hohmann transfer Phasing maneuvers Non-Hohmann transfers with a common apse line Apse line rotation Chase maneuvers Plane change maneuvers Nonimpulsive orbital maneuvers Problems References 7 Relative motion and rendezvous Introduction Relative motion in orbit Linearization of the equations of relative motion in orbit Clohessy-Wiltshire equations Two-impulse rendezvous maneuvers Relative motion in close-proximity circular orbits Problems Reference 8 Interplanetary trajectories Introduction Interplanetary Hohmann transfers Rendezvous opportunities Sphere of influence Method of patched conics Planetary departure Sensitivity analysis Planetary rendezvous Planetary flyby Planetary ephemeris Non-Hohmann interplanetary trajectories Problems References 9 Lunar trajectories Introduction Coplanar patched conic lunar trajectories A simplified lunar ephemeris Patched conic lunar trajectories in three dimensions Lunar trajectories by numerical integration Problems References 10 Introduction to orbital perturbations Introduction Cowells method Enckes method Atmospheric drag Gravitational perturbations Variation of parameters Gauss' variational equations Variation of the specific angular momentum h Variation of the eccentricity e Variation of the true anomaly θ Variation of right ascension Omega Variation of the inclination i Variation of argument of periapsis ω Method of averaging Orbital-averaged angular momentum variation Orbital-averaged eccentricity variation Orbital-averaged true anomaly variation Orbital-averaged right ascension of ascending node variation Orbital-averaged inclination variation Orbital-averaged argument of perigee variation Solar radiation pressure Lunar gravity Solar gravity Problems References 11 Rigid body dynamics Introduction Kinematics Equations of translational motion Equations of rotational motion Moments of inertia Parallel axis theorem Euler equations Kinetic energy The spinning top Euler angles Yaw, pitch, and roll angles Quaternions Problems References 12 Spacecraft attitude dynamics Introduction Torque-free motion Stability of torque-free motion Dual-spin spacecraft Nutation damper Coning maneuver Attitude control thrusters Yo-yo despin mechanism Radial release Gyroscopic attitude control Gravity gradient stabilization Problems References 13 Rocket vehicle dynamics Introduction Equations of motion The thrust equation Rocket performance Restricted staging in field-free space Optimal staging Lagrange multiplier Problems References APPENDIX A. Physical Data APPENDIX B. A Road Map APPENDIX C. Numerical Integration of the N-Body Equations of Motion APPENDIX D. MATLAB Scripts Introduction Chapter 1: Dynamics of Point Masses Algorithm 1.1: Numerical integration by Runge-Kutta methods RK1, RK2, RK3, or RK4 Function file rkf1_4.m Function file: Example_1_18.m Algorithm 1.2: Numerical integration by Heuns predictor-corrector method Function file: heun.m Function file: Example_1_19.m Algorithm 1.3: Numerical integration of a system of first-order differential equations by the Runge-Kutta-Fehlberg 4 ... Function file: rkf45.m Function file: Example_1_20.m Chapter 2: The Two-body Problem Algorithm 2.1: Numerical solution of the two-body problem relative to an inertial frame Function file: twobody3d.m Algorithm 2.2: Numerical solution of the two-body relative motion problem Function file: orbit.m Calculation of the Lagrange f and g functions and their time derivatives in terms of change in true anomaly Function file: f_and_g_ta.m Function file: fDot_and_gDot_ta.m Algorithm 2.3: Calculate the state vector from the initial state vector and the change in true anomaly Function file: rv_from_r0v0_ta.m Script file: Example_2_13.m Output from Example_2_13.m Algorithm 2.4: Find the root of a function using the bisection method Function file: bisect.m Function file: Example_2_16.m Output from Example_2_16.m MATLAB solution of Example 2.18 Function file: Example_2_18.m Output from Example_2_18.m Chapter 3: Orbital Position as a Function of Time Algorithm 3.1: Solution of Keplers equation by Newtons method Function file: kepler_E.m Script file: Example_3_02.m Output from Example_3_02.m Algorithm 3.2: Solution of Keplers equation for the hyperbola using Newtons method Function file: kepler_H.m Script file: Example_3_05.m Output from Example_3_05.m Calculation of the Stumpff functions S(z) and C(z) Function file: stumpS.m Function file: stumpC.m Algorithm 3.3: Solution of the universal Keplers equation using Newtons method Function file: kepler_U.m Script file: Example_3_06.m Output from Example_3_06.m Calculation of the Lagrange coefficients f and g and their time derivatives in terms of change in univeral anomaly Function file: f_and_g.m Function file: fDot_and_gDot.m Algorithm 3.4: Calculation of the state vector given the initial state vector and the time lapse Deltat Function file: rv_from_r0v0.m Script file: Example_3_07.m Output from Example_3_07 Chapter 4: Orbits in Three Dimensions Algorithm 4.1: Obtain the right ascension and declination from the position vector Function file: ra_and_dec_from_r.m Script file: Example_4_01.m Output from Example_4_01.m Algorithm 4.2: Calculation of the orbital elements from the state vector Function file: coe_from_sv.m Script file: Example_4_03.m Output from Example_4_03 Calculation of arctan (y/x) to lie in the range 0ú to 360 Function file: atan2d_0_360.m Algorithm 4.3: Obtain the classical Euler angle sequence from a direction cosine matrix Function file: dcm_to_euler.m Algorithm 4.4: Obtain the yaw, pitch, and roll angles from a direction cosine matrix Function file: dcm_to_ypr.m Algorithm 4.5: Calculation of the state vector from the orbital elements Function file: sv_from_coe.m Script file: Example_4_07.m Output from Example_4_05 Algorithm 4.6: Calculate the ground track of a satellite from its orbital elements [B] Function file: ground_track.m Chapter 5: Preliminary Orbit Determination Algorithm 5.1: Gibbs method of preliminary orbit determination Function file: gibbs.m Script file: Example_5_01.m Output from Example_5_01 Algorithm 5.2: Solution of Lamberts problem Function file: lambert.m Script file: Example_5_02.m Output from Example_5_02 Calculation of Julian day number at 0 hr UT Function file: J0.m Script file: Example_5_04.m Output from Example_5_04 Algorithm 5.3: Calculation of local sidereal time Function file: LST.m Script file: Example_5_06.m Output from Example_5_06 Algorithm 5.4: Calculation of the state vector from measurements of range, angular position, and their rates Function file: rv_from_observe.m Script file: Example_5_10.m Output from Example_5_10 Algorithms 5.5 and 5.6: Gauss method of preliminary orbit determination with iterative improvement Function file: gauss.m Script file: Example_5_11.m Output from Example_5_11 Chapter 6: Orbital Maneuvers Calculate the state vector after a finite time, constant thrust delta-v maneuver Function file: integrate_thrust.m Chapter 7: Relative Motion and Rendezvous Algorithm 7.1: Find the position, velocity, and acceleration of B relative to As LVLH frame Function file: rva_relative.m Script file: Example_7_01.m Output from Example_7_01.m Plot the position of one spacecraft relative to another Script file: Example_7_02.m Solution of the linearized equations of relative motion with an elliptical reference orbit Function file: Example_7_03.m Chapter 8: Interplanetary Trajectories Convert the numerical designation of a month or a planet into its name Function file: month_planet_names.m Algorithm 8.1: Calculation of the heliocentric state vector of a planet at a given epoch Function file: planet_elements_and_sv.m Script file: Example_8_07.m [Output from Example_8_07 Algorithm 8.2: Calculation of the spacecraft trajectory from planet 1 to planet 2 Function file: interplanetary.m Script file: Example_8_08.m Output from Example_8_08 Chapter 9: Lunar Trajectories Lunar state vector vs. time Function file: simpsons_lunar_ephemeris.m Numerical calculation of lunar trajectory Script File: Example_9_03.m Output from Example_9_03.m Chapter 10: Introduction to Orbital Perturbations US Standard Atmosphere 1976 Function file: atmosphere.m Time for orbit decay using Cowells method Function file: Example_10_01.m J2 perturbation of an orbit using Enckes method Function file: Example_10_02.m Example 10.6: Using Gauss variational equations to assess J2 effect on orbital elements Function file: Example_10_06.m Algorithm 10.2: Calculate the geocentric position of the sun at a given epoch Function file: solar_position.m Algorithm 10.3: Determine whether or not a satellite is in earths shadow Function file: los.m Example 10.9: Use Gauss variational equations to determine the effect of solar radiation pressure on an earth satel ... Function file: Example_10_09.m Algorithm 10.4: Calculate the geocentric position of the moon at a given epoch Function file: lunar_position.m Example 10.11: Use Gauss variational equations to determine the effect of lunar gravity on an earth satellites orbi ... Function file: Example_10_11.m Example 10.12: Use Gauss variational equations to determine the effect of solar gravity on an earth satellites orbi ... Function file: Example_10_12.m Chapter 11: Rigid Body Dynamics Algorithm 11.1: Calculate the direction cosine matrix from the quaternion Function file: dcm_from_q.m Algorithm 11.2: Calculate the quaternion from the direction cosine matrix Function file: q_from_dcm.m Quaternion vector rotation operation (Eq. 11.160) Function file: quat_rotate.m Example 11.26: Solution of the spinning top problem Function file: Example_11_23.m Chapter 12: Spacecraft Attitude Dynamics Chapter 13: Rocket Vehicle Dynamics Example 13.3: Calculation of a gravity turn trajectory Function file: Example_13_03.m APPENDIX E. Gravitational Potential of a Sphere APPENDIX F. Computing the Difference Between Nearly Equal Numbers Reference APPENDIX G. Direction Cosine Matrix in Terms of the Unit Quaternion Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Back Cover