دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Edmund S. Kostewicz, Maria Vertzoni, Heather A. E. Benson, Michael S. Roberts سری: ISBN (شابک) : 1119772699, 9781119772699 ناشر: Wiley سال نشر: 2022 تعداد صفحات: 489 [491] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت تبدیل فایل کتاب Oral Drug Delivery for Modified Release Formulations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحویل خوراکی دارو برای فرمولاسیون های رهش اصلاح شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای مرجع مفصلی برای توسعه فرمولهای MR در اختیار دانشمندان توسعه دارویی قرار میدهد
خوراکی تحویل دارو برای فرمولاسیونهای رهش اصلاحشده یک بررسی بهروز از جنبههای کلیدی جذب خوراکی از فرمهای دارویی با رهش اصلاحشده (MR) است. این جلد ویرایش شده پوشش عمیقی از عوامل فیزیولوژیکی مؤثر بر انتشار دارو و طراحی و ارزیابی فرمولاسیون MR ارائه می دهد.
این کتاب که به سه بخش تقسیم میشود، با توصیف دستگاه گوارش (GIT) و جزئیات شرایط و فرآیندهای جذبی که در GIT رخ میدهد و فراهمی زیستی خوراکی فرمولاسیون را تعیین میکند، آغاز میشود. بخش دوم طراحی فرمولهای رهش اصلاحشده را بررسی میکند، آزمایشهای اولیه مواد دارویی، سیستم طبقهبندی بیوداروها، مجموعهای از فنآوریهای فرمولاسیون را که میتوان برای اشکال دوز MR استفاده کرد و موارد دیگر را پوشش میدهد. بخش آخر بر ارزیابی in vitro، in silico و in vivo و ملاحظات نظارتی برای فرمولاسیون MR تمرکز دارد. موضوعات شامل آزمایش انحلال زیستی مرتبط، ارزیابی پیش بالینی، و مدلسازی فارماکوکینتیک مبتنی بر فیزیولوژیک (PBPK) رفتار in vivo است. این جلد با مشارکت محققان برجسته با تخصص در جنبه های مختلف فرمولاسیون MR:
ارائه خوراکی دارو برای فرمولاسیون با رهش اصلاح شده مرجع و راهنمای ارزشمندی برای محققان، دانشمندان صنعتی و دانشجویان تحصیلات تکمیلی در زمینه های عمومی است. ارائه دارو شامل داروسازی، علوم دارویی، مهندسی زیست پزشکی، علوم پلیمر و مواد، و مهندسی شیمی و بیوشیمی.
Provides pharmaceutical development scientists with a detailed reference guide for the development of MR formulations
Oral Drug Delivery for Modified Release Formulations is an up-to-date review of the key aspects of oral absorption from modified-release (MR) dosage forms. This edited volume provides in-depth coverage of the physiological factors that influence drug release and of the design and evaluation of MR formulations.
Divided into three sections, the book begins by describing the gastrointestinal tract (GIT) and detailing the conditions and absorption processes occurring in the GIT that determine a formulation’s oral bioavailability. The second section explores the design of modified release formulations, covering early drug substance testing, the biopharmaceutics classification system, an array of formulation technologies that can be used for MR dosage forms, and more. The final section focuses on in vitro, in silico, and in vivo evaluation and regulatory considerations for MR formulations. Topics include biorelevant dissolution testing, preclinical evaluation, and physiologically-based pharmacokinetic modelling (PBPK) of in vivo behaviour. Featuring contributions from leading researchers with expertise in the different aspects of MR formulations, this volume:
Oral Drug Delivery for Modified Release Formulations is an invaluable reference and guide for researchers, industrial scientists, and graduate students in general areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.
Cover Title Page Copyright Page Contents Preface List of Contributors Part I Understanding of Physiology and Anatomy – Factors Influencing Drug Release and Absorption from MR Formulations Chapter 1a Composition of Gastric Fluids Under Fasting and Fed Conditions 1a.1 Gastric Volume 1a.2 Gastric Acid 1a.3 Buffer Capacity 1a.4 Mucus/Viscosity 1a.5 Enzymes 1a.6 Surface Tension 1a.7 Osmolality 1a.8 Duodenogastric Reflux References Chapter 1b Composition of the Small Intestinal Contents Under Fasting and Fed Conditions 1b.1 Small Intestinal Volume 1b.2 pH Profile Along the Small Intestine 1b.3 Composition of the Luminal Contents 1b.3.1 Bile 1b.3.2 Phospholipids 1b.3.3 Monoglycerides and Free Fatty Acids 1b.4 Other Characteristics of Small Intestinal Fluids 1b.4.1 Buffer Capacity 1b.4.2 Osmolality 1b.4.3 Surface Tension 1b.4.4 Ionic Strength 1b.4.5 Viscosity 1b.5 Influence of Age, Gender, and Disease on the Small Intestinal Composition References Chapter 1c The Luminal Environment in the Proximal Colon 1c.1 Volume of Luminal Contents 1c.1.1 Liquid Contents 1c.1.2 Aspirated Contents and Liquid Fractions 1c.2 Luminal pH Values 1c.2.1 Data Collected with Telemetric Capsules 1c.2.2 Data Collected with Aspirated Samples 1c.3 Buffer Capacity 1c.4 Characteristics of Liquid Fraction of Contents 1c.5 Concluding Remarks References Chapter 2 Gastrointestinal Transit and Hydrodynamics Under Fasting and Fed Conditions 2.1 Introduction 2.2 Imaging Techniques Used for Assessment of Transit Times and Hydrodynamics 2.3 Oral Cavity and Esophagus 2.4 Stomach 2.5 Small Intestine 2.6 Large Intestine 2.7 Whole Gut Transit Time 2.8 Therapy-Related Effects on GI Transit 2.9 Motility Disorders Affecting the GI Transit of Oral Dosage Forms 2.10 Patient-Related Effects on GI Transit 2.10.1 Age 2.10.2 Gender 2.10.3 Dietary and Smoking Habits 2.11 Conclusion References Chapter 3 Intestinal Epithelium and Drug Transporters 3.1 Introduction: Oral Drug Absorption General Mechanisms and Influencing Factors 3.2 Expression of Drug Transporters in the Intestinal Epithelium 3.3 Uptake Transporters Present at the Intestinal Level 3.4 Regional Distribution of Uptake Transporters 3.5 Efflux Transporters at the Intestinal Level 3.6 Regional Distribution of Efflux Transporters 3.7 Impact of the Regional Distribution of Enzymes and Transporters in the Intestine on the Enzyme/Transporter Interplay 3.8 Species Differences in Regional Expression of Uptake and Efflux Transporters 3.9 Models for Regional Assessment of Intestinal Permeability 3.10 Use of PBPK to Integrate Formulation and Permeation Knowledge 3.11 Impact of Regional Solubility and Permeability Along the Intestine 3.12 Formulation Excipients and Their Potential Modulatory Effects on Transporters 3.13 Other Confounding Factors Affecting Drug Intestinal Absorption 3.14 Drug–Drug Interactions 3.15 Conclusion and Future Challenges References Chapter 4 The Interplay Between Drug Release and Intestinal Gut-Wall Metabolism 4.1 The Role of Gut Wall Metabolism in Determining Oral Bioavailability 4.1.1 Cytochrome P450’s (CYPs) 4.1.2 Uridine 5-Diphosphate Glucuronosyltransferases (UGTs) 4.1.3 Sulfotransferases (SULTs) 4.1.4 Other Drug-Metabolizing Enzymes in the Gut-Wall 4.1.5 Luminal Degradation in the Gut 4.2 Factors Affecting Gut Wall Metabolism 4.2.1 Absorption 4.2.2 Mucosal Blood Flow 4.2.3 Protein Binding 4.2.4 Metabolic Drug–Drug Interactions 4.2.5 Intestinal Transporter-Metabolism Interplay 4.3 Preclinical and Clinical In Vivo and In Situ Models for Studying Intestinal Metabolism 4.4 In Vitro Assays for Studying Intestinal Metabolism 4.5 Models for Studying Bacterial Degradation 4.6 In Vitro–In Vivo Extrapolation of Metabolic Clearance and In Silico Models for Predicting In Vivo Gut Wall Metabolism 4.7 Oral Extended-Release Formulations and Gut Wall Metabolism 4.8 Excipient Effects on Gut Wall Metabolism 4.9 Considerations for Intestinal Metabolism in Special Populations 4.10 Summary References Part II Design of MR Formulations – Considerations, Mechanisms and Technologies Chapter 5 Preformulation Considerations for Design of Oral Modified-Release Products 5.1 Introduction 5.2 Purpose of MR Formulations 5.3 Means to Obtain MR Drug Products 5.3.1 Physicochemical Characterization of the Drug Substance and its Impact on the Design of Modified-release Dosage Forms 5.4 Ionization Constant – pKa 5.5 Lipophilicity 5.6 Solubility 5.7 Chemical Stability 5.8 Solid State Characterization 5.9 Compatibility with Excipients 5.10 Permeability and Metabolism 5.10.1 Additional Early Drug Substance Testing 5.11 Regional Absorption 5.12 Microbial Stability 5.12.1 Early Performance Testing of Formulations 5.13 Quality by Design (QbD) for MR formulations 5.14 Conclusions References Chapter 6 The Application of Biopharmaceutics Classification Systems to Modified-Release Formulations 6.1 Introduction 6.2 The Use of Biopharmaceutics Classification Systems in Oral Drug Development 6.3 The Application of Classification Systems to MR Drug Product Development – An Evidence-Based Approach 6.3.1 Test Sets Used 6.3.2 Where Do Successfully Marketed Modified-Release Products Fit in Solubility/Permeability Classification Systems? 6.3.3 Classification System Categorization and Relative Colonic Bioavailability Data 6.3.4 The Significance of Dissolution Rate and Solubility in the Colon 6.3.5 Does Ionization State Matter? 6.3.6 Managing Low Solubility (DCS IIA/IIB) 6.3.7 Managing Low Permeability (DCS III/IV) 6.3.8 Beyond Permeability and Solubility: Other Factors Affecting MR Feasibility 6.3.8.1 Time-period for Drug Release and Absorption 6.3.8.2 Bacterial Metabolism in the Colon 6.3.8.3 Uptake Transporters 6.3.8.4 Gut Wall First-Pass Metabolism 6.3.8.5 Efflux Transporters 6.3.9 Relative Bioavailability in the Colon (FrelColon) as a Guide to Extended-Release Formulation Feasibility 6.3.10 The Properties of Drugs for Delayed-Release (Gastro Protection) 6.3.11 The Properties of Drugs for Targeting Local Release in the Lower GI Tract 6.4 Summary References Chapter 7 Technologies and Mechanisms for Oral Modified Release by Monolithic and Multiparticulate Delivery Systems 7.1 Introduction 7.2 Mechanism of Drug Release 7.3 Manufacturing Processes 7.3.1 Pelletization Processes 7.3.1.1 Extrusion–spheronization 7.3.1.2 Layering Techniques 7.3.1.3 Direct Pelletization from Powders (Wet Granulation) 7.3.2 Particulate Production from Liquid Systems (Globulation Methods) 7.3.2.1 Pelletization Methods Utilizing Melts 7.3.2.2 Spray Drying and Spray Congealing 7.3.2.3 Jet Cutting (Prilling) 7.3.3 Compression Methods 7.4 Formulation Screening and Characterization 7.5 Conclusions and Perspectives References Chapter 8 Lipid-based Formulations 8.1 Introduction 8.2 Mechanisms of Lipid-mediated Improvements in Bioavailability 8.2.1 Increased Drug Solubilization and Dissolution in the GIT 8.2.2 Increased Intestinal Permeability, Reduced First-pass Metabolism, and Intestinal Efflux 8.2.3 Promotion of Intestinal Lipid Absorption and Lymphatic Uptake 8.3 Lipid-based Formulations for Controlled Release 8.3.1 Solid Lipid Excipient Matrices 8.3.2 Solid Lipid Nanoparticles 8.4 Design of Lipid-based Formulations 8.4.1 Excipient Type and Selection 8.4.2 Drug Loading 8.4.3 Formulation Types and the Lipid Formulation Classification System 8.5 Formulation Screening and Characterization 8.5.1 Drug Solubility in Lipid-based Formulations 8.5.2 Self-emulsification and the Effect of Dispersion 8.5.3 Impact of Digestion 8.5.4 Assessing Supersaturation and Precipitation 8.5.5 Identifying Formulation Limiting Factors and the Lipid Formulation Performance Classification System (LF-PCS) 8.5.6 Characterization of Nanoparticulate Lipid-based Formulations 8.5.7 Preclinical to Clinical Dose Scaling and Developing In Vitro and In Vivo Correlations 8.6 Industrial Considerations on LBF 8.7 Emerging Applications of Lipid-based Formulations 8.8 Conclusions References Chapter 9 Strategies for MR Formulation Development: Mesoporous Silica 9.1 Introduction 9.2 Technologies 9.2.1 The Template Method in Synthesis of Mesoporous Silica 9.2.1.1 M41S Mesoporous Materials 9.2.1.2 SBA Mesoporous Materials 9.2.2 Factors Affecting Drug Loading 9.3 Characterization 9.4 Stability of Drug Carrier 9.5 Silica-based Materials for the Modified Release of Poorly Soluble Drugs – In Vitro/In Vivo Applications 9.5.1 pH-sensitive Silica-based Systems 9.5.2 Surface-modification of Silica-based Materials 9.5.3 Lipid Formulations of Silica-based Materials 9.6 Toxicological Assessment 9.6.1 In vitro Toxicity 9.7 Conclusions and Future Directions References Chapter 10 Hot-Melt Extrusion Technology for Modified-Release (MR) Formulation Development 10.1 Introduction 10.2 HME Technology Overview 10.2.1 Feeding of Raw Materials 10.2.1.1 Single-screw Extruders: Flood Feeding 10.2.1.2 Twin-screw Extruders: Starve Feeding 10.2.2 Conveying and Melting 10.2.3 Mixing 10.2.3.1 Dispersive Mixing 10.2.3.2 Distributive Mixing 10.2.4 Venting 10.2.5 Die Pressurization 10.2.6 Pumping and Shaping 10.2.7 Postprocessing 10.2.8 Process Monitoring and Statistical Process Controls 10.3 General Considerations in Developing MR Dosage Forms Using HME Processing 10.4 Material Considerations for MR-HME Application 10.5 Dosage Form Design and Case Studies 10.5.1 Powder/Granules/Multiparticulates 10.5.2 Compressed Tablets 10.6 Characterization of HME Products 10.6.1 Rheological Techniques 10.6.2 Use of Diffraction-Based Methods 10.6.3 Spectroscopic Methods 10.6.4 Thermal Methods 10.6.5 Microscopic Techniques 10.6.6 Chemical Properties 10.6.7 In Vitro Dissolution/Release Properties 10.7 Summary References Chapter 11 Gattefosse: Strategies for MR Formulation Development – Lipids 11.1 Introduction 11.2 Lipids Used in SR Matrix 11.2.1 Names and Structures 11.2.2 Physicochemical Properties 11.2.3 Physiological Properties 11.3 Processing Lipid SR Matrix 11.3.1 Direct Compression (DC) 11.3.1.1 Impact of Dual Hydrophilic/Hydrophobic Matrix 11.3.1.2 Impact of Filler 11.3.1.3 Impact of Tablet Size 11.3.1.4 Comparison with Polymer Matrices 11.3.2 Granulation 11.3.3 Melt and Mix Methods 11.3.4 Hot Melt Coating 11.4 Understanding Drug Release from Lipid Matrix 11.4.1 Drug Release Mechanism 11.4.2 Optimizing Drug Release with Formulation and Process Parameter Adjustments 11.4.3 Drug Release Prediction 11.5 Characterizing Lipid SR Matrix 11.5.1 In Vitro Characterization 11.5.2 In Vivo–In Vitro Correlation (IVIVC) 11.5.3 Resistance and Alcohol 11.5.4 Stability 11.6 Conclusions References Chapter 12 Polymethacrylates for Modified-Release Formulations 12.1 Introduction 12.2 Polymethacrylate Polymers and Their Application in Modified-Release Dosage Forms 12.3 Protective Coatings 12.4 Gastro-Resistant Coatings 12.5 EUDRACAP™ Functional Ready-To-Fill Capsules for Fast Track Development of Sensitive Drugs 12.6 Modified-Release Technology 12.7 Modified-Release Formulations for Gastrointestinal Targeting 12.7.1 Duodenal Drug Release 12.7.2 Colonic Drug Release 12.7.3 Modulated Drug Release 12.8 Matrix Tablets as an Alternative to Modified-Release Multiparticulate Dosage Forms 12.9 Alcohol-Resistant Formulation Concepts with EUDRAGIT® Polymers 12.10 Conclusion References Chapter 13 Strategies for Modified Release Oral Formulation Development 13.1 Introduction 13.2 Controlled-Release Drug Delivery Systems 13.2.1 Osmotic Tablets 13.2.1.1 Formulation, Characterization, and Evaluation 13.2.1.2 Manufacturing and Process Considerations 13.2.2 Multiparticulate Systems 13.2.2.1 Formulation, Characterization, and Evaluation of Spray-Layered Multiparticulates 13.2.2.2 Manufacturing and Process Considerations of Spray-Layered Multiparticulates 13.2.2.3 Formulation, Characterization, and Evaluation of Lipid-Based Multiparticulates 13.2.2.4 Manufacturing and Process Considerations of Lipid-Based Multiparticulates 13.3 Dual-Release Drug Delivery Systems and Fixed-Dose Combination 13.3.1 DuoCap™ Capsule-in-Capsule Technology 13.3.1.1 Formulation, Characterization, and Evaluation 13.3.1.2 Manufacturing and Process Considerations 13.4 Site-Specific Drug Delivery Systems 13.4.1 Postgastric-Targeted Release 13.4.1.1 Delayed-Release Acid-Resistant Capsules (DRcaps®) 13.4.1.2 Enteric Drug Delivery Capsules (enTRinsic™) 13.4.2 Encode™ Colonic Drug Delivery System 13.4.2.1 Formulation, Characterization, and Evaluation 13.4.2.2 Manufacturing and Process Considerations 13.5 Conclusion/Future Perspectives References Part III Evaluation of MR Formulations Chapter 14 Dissolution Equipment and Hydrodynamic Considerations for Evaluating Modified-Release Behavior 14.1 Introduction 14.2 Compendial Dissolution Equipment 14.2.1 USP Apparatus 1 – Basket Apparatus 14.2.2 USP Apparatus 2 – Paddle Apparatus 14.2.3 USP Apparatus 3 – Reciprocating Cylinder 14.2.4 USP Apparatus 4 – Flow-Through Cell 14.3 USP Apparatus 7 – Reciprocating Holder 14.4 Noncompendial Dissolution Equipment 14.4.1 Dynamic Monocompartmental Models 14.4.1.1 Rotating Beaker Apparatus 14.4.1.2 Apparatus for Simulating GI Forces Acting on a Dosage Form 14.4.1.3 Dynamic Gastric Model 14.4.1.4 Dynamic Colon Model 14.4.2 Dynamic Multicompartmental Models 14.4.2.1 Dissolution Stress Test Device 14.4.2.2 In Vitro Gastrointestinal Model (TIM) 14.5 Summary and Conclusion References Chapter 15 The Role and Applications of Dissolution Media for the Investigation of Modified-Release Formulations 15.1 Introduction 15.2 Compendial Media 15.3 Biorelevant Media 15.3.1 Concept of Different Levels of Complexity for Dissolution Media 15.3.2 Case Example Level I Media 15.3.3 Case Example Level II Media 15.3.4 Case Example Level III Media 15.3.5 Application of Levels Concept 15.3.6 Bicarbonate Buffer 15.4 Biphasic Dissolution Media 15.5 Summary and Outlook References Chapter 16 Biorelevant Dissolution Testing to Forecast the In Vivo Performance of Modified-Release Formulations 16.1 Introduction 16.2 Factors Affecting the In Vivo Performance of MR Products 16.2.1 Physiological Aspects 16.3 Drug-Related Aspects 16.4 Formulation-Related Aspects 16.5 Biorelevant In Vitro Dissolution Test Methods 16.6 General Remarks on Dissolution Media 16.7 General Remarks on Dissolution Test Devices 16.8 Dissolution Test Methods for the Simulation of Regional Transit Conditions 16.8.1 Simulation of Fasted State Administration of Oral MR Products 16.8.2 Simulation of Fed State Administration of Oral MR Products 16.9 Criteria for the Selection of a Suitable Biorelevant In Vitro Dissolution Method 16.10 Conclusion References Chapter 17 In Vitro and Ex Vivo Dissolution Tests for Considering Dissolution in the Lower Intestine 17.1 Introduction 17.2 Dissolution Tests for pH-responsive Delivery Systems 17.2.1 Dissolution Tests Using Compendial Apparatuses 17.2.2 Dissolution Tests Using Noncompendial Apparatuses 17.3 Dissolution Tests for Enzyme-triggered Delivery Systems 17.3.1 Dissolution Tests Using Enzyme-supplemented Compendial Media 17.3.2 Dissolution Tests Using Rat Cecal Contents 17.3.3 Dissolution Tests Using Human Fecal Contents 17.3.4 Dissolution Tests Using Bacteria-containing Media 17.4 Conclusion References Chapter 18 Preclinical Evaluation – Animal Models to Evaluate MR Formulations 18.1 Introduction 18.2 When to Use Nonclinical Models in the Development of Modified-release Formulations 18.3 Physiological Factors in Animals Used to Investigate Modified-release Formulations 18.3.1 The Stomach 18.3.2 The Small Intestine 18.3.3 The Large Intestine 18.4 Intestinal Site-specific Administration in Animals 18.5 Evaluation of Modified-release Formulations in Animal Models 18.5.1 Rodents – Rats 18.5.2 Dogs 18.5.3 Pigs and Mini-Pigs 18.5.4 Monkeys 18.6 Conclusions References Chapter 19 In Vitro–In Vivo Correlations for Modified Release Formulations 19.1 Introduction 19.2 Definitions of IVIVC 19.3 Correlation Levels 19.4 Considerations in IVIVC Development 19.4.1 In Vivo Absorption 19.4.2 In Vitro Dissolution Methodology 19.5 IVIVC Models 19.6 Predictability of IVIVC 19.7 Use of IVIVC 19.7.1 Setting In Vitro Dissolution Limits 19.7.2 Optimization of Formulations 19.7.3 Dissolution and IVIVC as a Surrogate for In Vivo Data 19.8 Limitations of an IVIVC 19.9 Conclusion Acknowledgment References Chapter 20 Application of the Simcyp Population-based PBPK Simulator to the Modelling of MR Formulations 20.1 Introduction 20.2 The ADAM Oral Absorption Model 20.3 Handling of Modified Release Formulations 20.4 System Information 20.5 MR Case Studies/Examples 20.5.1 Introduction 20.5.2 Bottom-up Methods 20.5.3 Virtual Bioequivalence, Biowaivers, and Setting Dissolution Specifications 20.5.4 Physiologically Based IVIVC 20.6 Conclusion References Chapter 21 PK-Sim® for Modeling Oral Drug Delivery of Modified-Release Formulations 21.1 General Introduction on PK-Sim® and MoBi® 21.2 Gastrointestinal Transit and Absorption Model 21.3 Formulations Available in PK-Sim® 21.4 Dissolved Form 21.5 Zero and First-order Release and Lint80 Release 21.6 Weibull 21.7 Particle Dissolution 21.7.1 Direct Use of MR In Vitro Release Profiles 21.8 Dissolution Media and Transit Times 21.9 Case Studies 21.9.1 Use of a Fitted In Vitro Dissolution Function as a Direct Drug Input 21.9.2 Prediction of Plasma Concentration After Administration of an Enteric-coated Tablet 21.10 Outlook References Chapter 22 Clinical Evaluation – In Vivo Bioequivalence Assessment of MR Formulations 22.1 Introduction/Historical Background 22.2 Clinical Evaluation of New and Generic Modified-Release Formulations 22.2.1 Pharmacokinetic Studies 22.2.2 The Modified-Release Formulations in the Milieu of the Gastrointestinal Tract 22.2.3 Influence of Drug Properties 22.2.4 Influence of Physiological Factors 22.2.5 Food Effect and Drug Interactions 22.2.6 The Use of In Vitro/In Vivo Correlations (IVIVC) in Clinical Evaluation of Controlled-Release Formulations 22.2.7 Bioequivalence of MR Products: An Ever-Evolving Field 22.2.8 Approaches and Metrics Associated with the Modified-Release Bioequivalence Assessment 22.2.9 Current Regulatory Requirements for the Demonstration of Bioequivalence of MR Formulations 22.3 Summary References Chapter 23 US Regulatory Considerations for Modified Release Products 23.1 Introduction 23.2 Clinical Development Programs for Nongeneric MR Dosage Forms 23.2.1 Clinical Development Programs for Obtaining Efficacy and Safety Information 23.2.1.1 Bioequivalence Trials 23.2.1.2 Bioavailability Trials in Combination with PK/PD Trials or with Clinical Efficacy and Safety Trials 23.2.2 Clinical Development Program for Product Characterization 23.2.2.1 In Vivo Evaluation of Multiple Strengths 23.2.2 Clinical Development Program for Product Characterization 23.2.2.3 Assessment of Alcohol Effect 23.2.2.4 Dosage Instructions in Patients with Changed Clearance 23.2.3 Modeling and Simulations to Support Product Development 23.3 Considerations for Clinical Development Programs for Generic MR Products 23.4 Studies to Support Postapproval Changes for MR Products 23.4.1 Different Levels of Postapproval Changes 23.4.2 Additional In Vitro Dissolution Evaluations 23.4.3 In vitro/In Vivo Correlations (IVIVC) 23.5 Summary Disclaimer References Chapter 24 Regulatory Assessment, European Perspective 24.1 Introduction 24.2 Quality of Oral Extended-Release Products 24.2.1 Pharmaceutical Development 24.2.1.1 Quality Target Product Profile and Critical Quality Attributes 24.2.1.2 Manufacturing Process 24.2.1.3 Dissolution Method and Discriminatory Power 24.2.1.4 Bioavailability Studies 24.2.2 In Vitro–In Vivo Correlation 24.2.3 Setting Specifications 24.2.3.1 Case (A) Level A IVIVC is Established 24.2.3.2 Case (B) No IVIVC is Established 24.2.4 Control Strategy 24.3 Quality by Design in Pharmaceutical Development 24.3.1 Risk Assessment 24.3.2 Design Space 24.3.3 Control Strategy 24.4 Pharmacokinetic and Clinical Evaluation of Modified Release Dosage Forms 24.4.1 Rationale for Development 24.4.1.1 Pharmacokinetic Studies 24.4.1.2 Prolonged Residence Time in the Stomach 24.4.1.3 Clinical Studies 24.4.1.4 Generic Modified Release Formulations 24.5 Concluding Remarks References Chapter 25 Industry Perspectives for the Evaluation of MR Formulations 25.1 Introduction 25.2 Commercially Marketed MR Products – Historical Trends and Emerging Themes 25.3 Early-stage MR Product Development 25.4 Current Themes for Industrial MR Product Evaluation: (1) Dissolution Acceleration 25.5 Current Themes for Industrial MR Product Evaluation: (2) Hydro-ethanolic Studies 25.6 Conclusion References Index EULA