دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Ye Zhou سری: ISBN (شابک) : 9781000325751, 100032575X ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 382 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Optoelectronic Organic-Inorganic Semiconductor Heterojunctions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتصالات ناهمگون نیمه هادی آلی- معدنی نوری الکترونیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Optoelectronic Organic-Inorganic Semiconductor Heterojunctions پیشرفت ها در توسعه اتصالات ناهمگون نیمه هادی آلی- معدنی را خلاصه می کند، به چالش ها و راه حل های ممکن برای طراحی مواد/دستگاه اشاره می کند و چشم انداز کاربردهای تجاری را ارزیابی می کند. مفهوم و مکانیسم اساسی اتصالات ناهمگون نیمه هادی را معرفی می کند مجموعه ای از اتصالات ناهمگون نیمه هادی آلی- معدنی را با خواص الکتریکی و نوری مطلوب برای دستگاه های الکترونیکی نوری شرح می دهد. به عنوان راهبردهای ممکن برای ترویج ترجمه تجاری دستگاه های الکترونیک نوری مبتنی بر اتصالات ناهمگون نیمه هادی با هدف دانشجویان فارغ التحصیل و محققانی که در مواد حالت جامد و الکترونیک کار می کنند، این کتاب دیدگاهی جامع و در عین حال قابل دسترس از وضعیت هنر و مسیرهای آینده ارائه می دهد.
Optoelectronic Organic-Inorganic Semiconductor Heterojunctions summarizes advances in the development of organic-inorganic semiconductor heterojunctions, points out challenges and possible solutions for material/device design, and evaluates prospects for commercial applications. Introduces the concept and basic mechanism of semiconductor heterojunctions Describes a series of organic-inorganic semiconductor heterojunctions with desirable electrical and optical properties for optoelectronic devices Discusses typical devices such as solar cells, photo-detectors, and optoelectronic memories Outlines the materials and device challenges as well as possible strategies to promote the commercial translation of semiconductor heterojunctions-based optoelectronic devices Aimed at graduate students and researchers working in solid-state materials and electronics, this book offers a comprehensive yet accessible view of the state of the art and future directions.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editor Biography List of Contibutors Chapter 1: Introduction to Organic–Inorganic Heterojunction References Chapter 2: Energy-Level Alignment at Organic–Inorganic Heterojunctions 2.1 Introduction 2.2 Interface Formation between Organic and Inorganic Semiconductors: 6P on ZnO 2.3 Work Function Tuning of ZnO via Dipole Bearing Self-assembled Monolayers 2.4 Work Function Tuning with Electron Donor and Acceptor Molecules 2.5 Fingerprint of Ground-State Charge Transfer in the Optical Spectra of ZnO-Acceptor Interfaces 2.6 Organic–Inorganic Semiconductor pn-Junction 2.7 Energy-Level Tuned Organic–Inorganic Heterojunctions for Light-Emitting Applications Acknowledgements References Chapter 3: Molecular Layer Deposition of Organic–Inorganic Hybrid Materials 3.1 Introduction 3.2 The Basics of MLD 3.2.1 Surface Chemistry 3.2.2 Growth Characteristics 3.3 MLD Processes for Organic–Inorganic Hybrid Metalcones 3.3.1 Alucones 3.3.1.1 Homobifunctional Organic Precursors 3.3.1.2 Heterobifunctional Organic Precursors 3.3.2 Titanicones 3.3.3 Zincones 3.3.4 Other Metalcones 3.4 Other Hybrid Materials 3.4.1 Luminescent Hybrid Materials 3.4.2 Metal-Organic Frameworks (MOFs) 3.4.3 Energy-Storage Materials 3.4.4 Organic Magnets 3.4.5 Complex MLD Processes 3.4.6 Organic–Inorganic Hybrid Nanolaminates by MLD and ALD 3.5 Conclusions Acknowledgements References Chapter 4: Scanning Tunneling Microscope and Spectroscope on Organic–Inorganic Material Heterojunction 4.1 Introduction 4.2 Band Mapping; across a PN-Junction in a Nanorod 4.2.1 Nanorods and Junctions Characterization: Tunneling Current and Density of States 4.2.2 Parallel PN-Junctions across Nanowires via One-Step Ex Situ Doping 4.3 Interfacial Band Mapping across Vertically Phased Separated Polymer/Fullerene Hybrid Solar Cells 4.4 Organic–Inorganic Hybrid Heterojunction 4.4.1 Photocarrier Generations and Band Alignments at Perovskite/PbI 2 Heterointerfaces 4.4.2 Photocarrier Generations of Perovskites during Illumination 4.4.3 Band Alignments of Perovskites during Illumination 4.4.4 PbI 2 Layer Thickness Dependence of ΔED 4.5 Outlook and Upcoming Challenges References Chapter 5: Organic–Inorganic Semiconducting Nanomaterial Heterojunctions 5.1 Overview 5.2 Heterojunction of Cd-based Inorganic Semiconductor 5.3 Heterojunction Nanodots of Zn-based Inorganic Semiconductors 5.4 Heterojunction of Ti-based Inorganic Semiconductors 5.5 Heterojunction of Si-based Inorganic Semiconductors 5.6 Heterojunction of Perovskite-based Inorganic Semiconductors 5.7 Heterojunction of Ag-based Inorganic Semiconductors 5.8 Heterojunction of Bi-based Inorganic Semiconductors 5.9 Heterojunction of Pb-based inorganic semiconductors 5.10 Heterojunction of Other Metal-based Inorganic Semiconductors 5.11 Conclusions Abbreviations and Acronyms References Chapter 6: Organic–Inorganic Heterojunction Nanowires 6.1 Introduction: Background and Driving Forces 6.2 The Synthetic Methods of Organic–Inorganic Heterojunction Nanowires 6.2.1 Solution Phase Method 6.2.2 Template Method Combined with Electrochemical Polymerization 6.2.2.1 Template Method Combined with Pressure Injection 6.2.3 Vapor–Liquid–Solid Method 6.3 The Applications of Organic–Inorganic Heterojunction Nanowires 6.3.1 Field Emission 6.3.2 Diode Rectification 6.3.3 Solar Cells 6.3.4 Photoelectric Detection 6.3.5 Logic Gates 6.4 Summary and Perspective References Chapter 7: Electroluminescence of Organic Molecular Junction in Scanning Tunneling Microscope 7.1 Introduction: Molecular Junctions and Devices 7.2 Transport Mechanism in Molecular Junctions 7.2.1 Coherent Transport 7.2.2 Incoherent Transport 7.3 Optical Properties of Molecular Junctions 7.4 Special Phenomena: Hot Luminescence and Upconversion 7.4.1 Hot Luminescence 7.4.2 Upconversion Electroluminescence 7.5 Summary and Outlook References Chapter 8: Recent Research Progress on Organic–Inorganic Hybrid Solar Cells 8.1 Introduction 8.2 ZnO organic Hybrid Solar Cells 8.2.1 ZnO-NP Organic Hybrid Solar Cells 8.2.2 Modified ZnO Organic Hybrid Solar Cells 8.3 TiO 2 organic Hybrid Solar Cells 8.3.1 TiO 2 -NP Organic Hybrid Solar Cells 8.3.2 Modified TiO 2 Organic Hybrid Solar Cells 8.4 ZnO/TiO 2 Organic Hybrid Solar Cells 8.5 New Type Organic–Inorganic Solar Cells based on All Chl Derivative References Chapter 9: Nanogenerators Based on Organic–Inorganic Heterojunction Materials 9.1 Introduction 9.2 Fundamentals of Nanogenerator 9.3 Piezoelectric Nanogenerators Based on Organic–Inorganic Hybrid Nanomaterial 9.3.1 Basic Concept of PENGs and Its Operating Principle 9.3.2 Material Design Criteria and Techniques for Performance Enhancement 9.3.3 InN Nanowire-Based High-Performance PENGs 9.3.4 1D/2D ZnO Nanostructure-Based PENGs 9.4 Triboelectric Nanogenerators Based on Organic–Inorganic Hybrid Nanomaterial 9.4.1 Basic Concept of TENGs and Its Operating Principle 9.4.2 Material Design Criteria and Techniques for Performance Enhancement 9.4.3 High-Performance TENGs 9.5 Hybrid nanogenerators Based on Organic–Inorganic Hybrid Nanomaterial 9.5.1 Basic Concept of HNGs and Its Operating Principle 9.5.2 Various Approaches Taken to Design High-Performance HNGs 9.5.2.1 Cascade-Type Hybrid Nanogenerator 9.5.2.2 Organic–Inorganic Hybrid NG 9.6 Conclusion Acknowledgments References Chapter 10: Organic–Inorganic Semiconductor Heterojunctions for Hybrid Light-Emitting Diodes 10.1 Introduction 10.2 Basic Introduction to White LEDs 10.2.1 III-Nitride Semiconductors and Inorganic LEDs 10.2.2 Colorimetry, Radiometry, Photometry, and Efficacy 10.2.3 White Light Generation 10.2.4 Use of Phosphors in White LEDs 10.2.5 White Organic LEDs 10.3 Chemistry 10.4 Light-Emitting Polymers 10.4.1 Introduction 10.4.2 Polymers in Hybrid White LEDs 10.5 Luminescent Small Molecules 10.5.1 Introduction 10.5.2 Manipulation of the Chemical Structure and Effect on Optical Properties 10.5.2.1 Introduction to BODIPY 10.5.2.2 Toward White Light: Yellow Emission from Oligofluorene-BODIPY Oligomers 10.5.2.3 Toward White Light: Blue Light Absorption for White LEDs 10.5.2.4 Toward White Light: Nanorod Encapsulation 10.5.3 Toward White Light: Deposition and Encapsulation 10.5.4 White Light Device Efficiency and Efficacy 10.5.5 White Light Degradation and Lifetime 10.5.6 Next-Generation White-Emitting LEDs with Improved Efficacy 10.5.7 Metal–Organic Frameworks 10.6 Summary Acknowledgments References Chapter 11: Organic–Inorganic Semiconductor Heterojunctions for Resistive Switching Memories 11.1 Introduction 11.2 Organic–Inorganic Semiconductor Heterojunctions for WORM Memory Devices 11.3 Organic–Inorganic Semiconductor Heterojunctions for Unipolar Memory Devices 11.4 Organic–Inorganic Semiconductor Heterojunctions for Bipolar Memory Devices 11.5 Challenges and Prospects Acknowledgments References Chapter 12: Optoelectronic Sensors for Health Monitoring 12.1 Introduction 12.2 Sensing Mechanisms and Materials 12.2.1 Active Sensing Components 12.2.2 Supporting Substrates and Fabrication Methods 12.2.2.1 Photolithography 12.2.2.2 Functional Printing of Electronic Sensing Devices 12.2.2.3 Fabrication of Optical Sensor Arrays 12.3 Clinical Applications of Optoelectronic Sensors 12.3.1 Physical Index Monitoring 12.3.2 Human Movement Monitoring 12.3.3 Chemical Index Monitoring 12.3.3.1 Glucose 12.3.3.2 Pathogens 12.3.3.3 Cancer and Other Disease Biomarkers 12.4 Conclusions References Chapter 13: Organic–Inorganic Semiconductor Heterojunction Photocatalysts 13.1 Introduction 13.2 Photocatalysts 13.2.1 Inorganic Photocatalyst 13.2.1.1 Metal Oxide 13.2.1.2 Sulfide 13.2.1.3 Solid Solution 13.2.1.4 Perovskite 13.2.2 Organic Photocatalyst 13.2.2.1 C 3 N 4 -Based Materials 13.2.2.2 MOF 13.2.2.3 PDI 13.2.3 Organic–Inorganic Heterojunction Photocatalyst 13.2.3.1 C 3 N 4 -Inorganic Heterojunction 13.2.3.2 MOFs-Inorganic Heterojunction 13.2.3.3 PDI-Inorganic Heterojunction 13.3 Mechanism of the Photocatalysis for Heterojunctions 13.3.1 p-n Heterojunction 13.3.2 Type I and Type II Heterojunctions 13.3.3 Z-Scheme Heterojunction 13.4 Conclusion and Outlook References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z