دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: M. Hadi Amini (editor)
سری:
ISBN (شابک) : 3030340937, 9783030340933
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 306
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Optimization, Learning, and Control for Interdependent Complex Networks (Advances in Intelligent Systems and Computing, 1123) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازی، یادگیری و کنترل برای شبکه های پیچیده به هم وابسته (پیشرفت در سیستم های هوشمند و محاسبات، 1123) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editor 1 Panorama of Optimization, Control, and Learning Algorithms for Interdependent SWEET (Societal, Water, Energy, Economic, and Transportation) Networks 1.1 Introduction 1.2 Part I: Theoretical Algorithms for Optimization, Learning, and Data Analytics in Interdependent Complex Networks 1.2.1 Chapter 2: Promises of Fully Distributed Optimization for IoT-Based Smart City Infrastructures: Theory and Applications 1.2.2 Chapter 3: Evolutionary Computation, Optimization, and Learning Algorithms for Data Science 1.2.3 Chapter 4: Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics 1.2.4 Chapter 5: Feature Selection in High-Dimensional Data 1.2.5 Chapter 6: An Introduction to Advanced Machine Learning: Meta-Learning Algorithms, Applications, and Promises 1.3 Part II: Application of Optimization, Learning, and Control in Interdependent Complex Networks 1.3.1 Chapter 7: Predictive Analytics in Future Power Systems: A Panorama and State-of-the-Art of Deep Learning Applications 1.3.2 Chapter 8: Bilevel Adversary-Operator Cyberattack Framework and Algorithms for Transmission Networks in Smart Grids 1.3.3 Chapter 9: Toward Operational Resilience of Smart Energy Networks in Complex Infrastructures 1.3.4 Chapter 10: Control of Cooperative Unmanned Aerial Vehicles: Review of Applications, Challenges, and Algorithms 1.3.5 Chapter 11: An Optimal Approach for Load-Frequency Control of Islanded Microgrids Based on Non-linear Model 1.3.6 Chapter 12: PV Design for Smart Cities and Demand Forecasting Using Truncated Conjugate Gradient Algorithm References Part I Theoretical Algorithms for Optimization, Learning, and Data Analytics in Interdependent Complex Networks 2 Promises of Fully Distributed Optimization for IoT-Based Smart City Infrastructures 2.1 Introduction 2.1.1 Motivation 2.1.2 Related Works 2.1.3 Contribution 2.1.4 Organization 2.2 A Novel Holistic Framework for Interdependent Operation of Power Systems and Electrified Transportation networks 2.3 Definition of Agents and Their Corresponding Features 2.3.1 Power System-Specific Agents 2.3.2 Transportation Network-Specific Agents 2.3.3 Coupling Agents 2.4 General Optimization Problem 2.4.1 Problem Formulation 2.4.2 Optimality Conditions 2.5 Consensus+Innovations Based Distributed Algorithm 2.5.1 Distributed Decision Making: General Distributed Update Rule 2.5.2 Agent-Based Distributed Algorithm 2.6 Conclusions Appendix 1: Convergence Analysis References 3 Evolutionary Computation, Optimization, and Learning Algorithms for Data Science 3.1 Introduction 3.1.1 Overview 3.1.2 Motivation 3.1.3 Curse of Dimensionality 3.1.4 Nature-Inspired Computation 3.1.5 Nature-Inspired Meta-Heuristic Computation 3.1.6 Nature-Inspired Evolutionary Computation 3.1.6.1 Evolutionary-Based Memetic Algorithms 3.1.7 Organization 3.2 Feature Extraction Techniques 3.3 Bio-Inspired Evolutionary Computation 3.3.1 Overview of Evolutionary Algorithms 3.3.2 Genetic Algorithm vs. Genetic Programming 3.3.2.1 Genetic Algorithm 3.3.2.2 Genetic Programming 3.3.3 Artificial Bee Colony Algorithm 3.3.4 Particle Swarm Optimization Algorithm 3.3.5 Ant Colony Optimization (ACO) 3.3.6 Grey Wolf Optimizer (GWO) 3.3.7 Coyote Optimization Algorithm (COA) 3.3.8 Other Optimization Algorithms 3.4 Conclusion References 4 Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics 4.1 Introduction 4.1.1 Overview 4.1.2 Organization 4.2 Application of Evolutionary Algorithms 4.2.1 Feature Extraction Optimization 4.2.1.1 Feature Selection for Image Classification 4.2.2 Feature Selection for Network Traffic Classification 4.2.3 Feature Selection Benchmarks 4.3 Discussion 4.4 Conclusion References 5 Feature Selection in High-Dimensional Data 5.1 Overview 5.2 Intrinsic Characteristics of High-Dimensional Data 5.2.1 Large Number of Features 5.2.2 Small Number of Samples 5.2.3 Class Imbalance 5.2.4 Label Noise 5.2.5 Intrinsic Characteristics of Microarray Data 5.3 Feature Selection 5.4 Filter Methods 5.4.1 Similarity-Based Methods 5.4.1.1 Relief and ReliefF 5.4.1.2 Fisher Score 5.4.1.3 Laplacian Score 5.4.2 Statistical-Based Methods 5.4.2.1 Correlation-Based Feature Selection (CFS) 5.4.2.2 Low Variance 5.4.2.3 T-Score 5.4.2.4 Information Theoretical-Based Methods 5.4.2.5 FCBF 5.4.2.6 Minimum-Redundancy-Maximum-Relevance (mRMR) 5.4.2.7 Information Gain 5.5 Wrapper Methods 5.5.1 ABACOH and ACO 5.5.2 PSO 5.5.3 IBGSA 5.6 Hybrid Method 5.7 Embedded Methods 5.8 Ensemble Techniques 5.9 Practical Evaluation 5.9.1 Dataset 5.9.2 Performance Evaluation Criteria 5.9.3 Data Normalization 5.9.4 Analysis of Filter Algorithms 5.9.5 Analysis of Hybrid-Ensemble Methods 5.9.5.1 Hybrid-Ensemble 1 5.9.5.2 Hybrid-Ensemble 2 5.10 Summary References 6 An Introduction to Advanced Machine Learning: Meta-Learning Algorithms, Applications, and Promises 6.1 Introduction 6.2 Machine Learning: Challenges and Drawbacks 6.3 Meta-Learning Algorithms 6.3.1 Model-Based MTL 6.3.2 Metric-Based Learning 6.3.3 Gradient Decent-Based Learning 6.4 Promises of Meta-Learning 6.4.1 Few-Shot Learning 6.4.2 One-Shot Learning 6.4.3 Zero-Shot Learning 6.5 Discussion 6.6 Conclusion References Part II Application of Optimization, Learning and Control in Interdependent Complex Networks 7 Predictive Analytics in Future Power Systems: A Panorama and State-Of-The-Art of Deep Learning Applications 7.1 Introduction 7.1.1 Motivation 7.1.2 Classification of Power Systems Forecasting Models 7.1.2.1 Classification Based on the Domain of Application in Power Systems 7.1.2.2 Classification Based on Timescale 7.1.3 Organization of the Chapter 7.2 Forecasting in Power Systems Using Classical Approaches 7.2.1 Time Series Data 7.2.2 Statistical Forecasting Approaches 7.2.2.1 Naïve Model Approach 7.2.2.2 Exponential Smoothing 7.2.2.3 Autoregressive Moving Average (ARMA) Models 7.2.2.4 Autoregressive Moving Integrated Average (ARIMA) Models 7.2.3 Machine Learning Forecasting Approaches 7.2.3.1 Support Vector Regression 7.2.3.2 Gaussian Process Regression 7.2.4 Shortcomings of Classical Approaches 7.3 Forecasting in Power Systems Using Deep Learning 7.3.1 Deep Learning 7.3.1.1 Recurrent Neural Network 7.3.1.2 Long Short-Term Memory Network 7.3.1.3 Other Relevant Models 7.3.2 Deep Learning Applications 7.3.2.1 Load Forecasting 7.3.2.2 Generation Forecasting 7.3.2.3 Electricity Price Forecasting and Electric Vehicle Charging 7.3.3 Deep Learning Strengths and Shortcomings 7.3.3.1 Strengths 7.3.3.2 Shortcomings 7.4 Case Study: Multi-Timescale Solar Irradiance Forecasting Using Deep Learning 7.4.1 Data 7.4.1.1 Global Horizontal Irradiance 7.4.1.2 Exogenous Input Variables 7.4.1.3 Data Preprocessing and Postprocessing 7.4.2 Model Architecture and Training 7.4.3 Results 7.4.3.1 Single Time Horizon Model 7.4.3.2 Multi-Time-Horizon Model 7.5 Summary and Future Work 7.5.1 Deterministic Versus Probabilistic Forecasting 7.5.2 Other Potential Applications References 8 Bi-level Adversary-Operator Cyberattack Framework and Algorithms for Transmission Networks in Smart Grids 8.1 Introduction 8.1.1 Overview 8.2 DC Power Flow Model 8.3 False Data Injection Attacks Based on DC State Estimation 8.4 Attacker\'s Problem: Finding the Optimal Set of Target Transmission Lines using MILP 8.4.1 Identifying Feasible Attacks 8.5 Operator\'s Problem: Bad Data Detection to Prevent Outages Caused by Cyberattack 8.6 Case Studies 8.6.1 Feasibility of Line Overflow 8.6.2 Targeted Attack on Line 15 8.6.3 Severe Attack on an Area 8.7 Conclusion References 9 Toward Operational Resilience of Smart Energy Networks in Complex Infrastructures 9.1 Introduction 9.1.1 Overview 9.2 Resilience Enhancement Scheme 9.3 Real-Time Decision Making Process 9.4 Optimization Model 9.4.1 Pre-event Preparation Strategy 9.4.2 Mid-Event Monitoring 9.4.3 Post-event Restoration Problem 9.5 Simulation Results 9.6 Conclusion References 10 Control of Cooperative Unmanned Aerial Vehicles: Review of Applications, Challenges, and Algorithms Abbreviations 10.1 Introduction 10.2 Applications and Literature Review 10.2.1 Search and Rescue 10.2.2 Surveillance 10.2.3 Localization and Mapping 10.2.4 Military Applications 10.2.4.1 Reconnaissance Strategy 10.2.4.2 Penetrating Strategy 10.3 Challenges 10.4 Algorithms 10.4.1 Consensus Strategies 10.4.1.1 Graph Theory Basics in Communication Systems 10.4.1.2 Consensus Control Theory 10.4.1.3 Consensus Recent Researches 10.4.2 Flocking Based Strategies 10.4.2.1 Flocking Control Theory 10.4.2.2 Flocking Recent Researches 10.4.3 Guidance Law Based Cooperative Control 10.4.3.1 Guidance Law Based Recent Researches 10.5 Summary and Conclusion Bibliography 11 An Optimal Approach for Load-Frequency Control of Islanded Microgrids Based on Nonlinear Model Nomenclature 11.1 Introduction 11.2 Dynamic Model of Microgrid 11.3 The Proposed Intelligent Control Method 11.4 Simulation and Results 11.5 Conclusion References 12 Photovoltaic Design for Smart Cities and Demand Forecasting Using a Truncated Conjugate Gradient Algorithm Abbreviations 12.1 Introduction 12.2 Objectives and Targets 12.3 Literature Review 12.4 Rule-Based Neural Network Structure 12.5 The Proposed Model 12.6 Results and Discussion 12.7 Conclusion References Index