دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Vasile Marinca, Nicolae Herisanu, Bogdan Marinca سری: ISBN (شابک) : 3030756521, 9783030756529 ناشر: Springer سال نشر: 2021 تعداد صفحات: 492 [476] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش توابع کمکی بهینه برای سیستم های دینامیکی غیرخطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب روش توابع کمکی بهینه را ارائه می کند و آن را برای مسائل مختلف مهندسی و به ویژه در مسائل لایه مرزی به کار می برد. سنگ بنای روش ارائه شده مفهوم \"عملکردهای کمکی بهینه\" است که برای به دست آوردن نتایج دقیق به روشی کارآمد مورد نیاز است. برخلاف سایر روش های تحلیلی شناخته شده، این روش روشی ساده اما دقیق برای کنترل و تنظیم همگرایی راه حل های سیستم های دینامیکی غیرخطی در اختیار ما قرار می دهد. توابع کمکی بهینه وابسته به برخی پارامترهای همگرایی-کنترل هستند که مقادیر بهینه آنها به دقت از نقطه نظر ریاضی تعیین می شود. قدرت سرمایه روش ما همگرایی سریع آن است، زیرا پس از تنها یک تکرار، راه حل های تحلیلی بسیار دقیقی به دست می آوریم که تأیید آنها بسیار آسان است. علاوه بر این، هیچ فرضیه یا فرضیه سادهسازی وجود ندارد. این کتاب شامل حجم زیادی از مدل های کاربردی از زمینه های مختلف مهندسی مانند مکانیک کلاسیک و سیالات، ترمودینامیک، نوسانات غیرخطی، ماشین های الکتریکی و بسیاری دیگر است. این کتاب ادامه کتابهای قبلی ما «سیستمهای دینامیکی غیرخطی در مهندسی» است. برخی از رویکردهای تقریبی»، Springer-2011 و «روش مجانبی هموتوپی بهینه». کاربردهای مهندسی، Springer-2015.
This book presents the optimal auxiliary functions method and applies it to various engineering problems and in particular in boundary layer problems. The cornerstone of the presented procedure is the concept of “optimal auxiliary functions” which are needed to obtain accurate results in an efficient way. Unlike other known analytic approaches, this procedure provides us with a simple but rigorous way to control and adjust the convergence of the solutions of nonlinear dynamical systems. The optimal auxiliary functions are depending on some convergence-control parameters whose optimal values are rigorously determined from mathematical point of view. The capital strength of our procedure is its fast convergence, since after only one iteration, we obtain very accurate analytical solutions which are very easy to be verified. Moreover, no simplifying hypothesis or assumptions are made. The book contains a large amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and many more. The book is a continuation of our previous books “Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches”, Springer-2011 and “The Optimal Homotopy Asymptotic Method. Engineering Applications”, Springer-2015.
Preface Contents Part I A Short Introduction to the Optimal Auxiliary Functions Method 1 Introduction References 2 The Optimal Auxiliary Functions Method References Part II The Optimal Auxiliary Functions Method in Engineering Applications 3 The First Alternative of the Optimal Auxiliary Functions Method 3.1 Dynamics of an Angular Misaligned Multirotor System 3.1.1 The Governing Equations 3.1.2 Optimal Auxiliary Functions Method for Nonlinear Vibration of Misaligned Multirotor System 3.1.3 Numerical Examples References 4 Oscillations of a Pendulum Wrapping on Two Cylinders 4.1 Equation of Motion 4.2 Application of OAFM to a Pendulum Wrapping on Two Cylinders 4.3 Numerical Examples References 5 Free Oscillations of Euler–Bernoulli Beams on Nonlinear Winkler-Pasternak Foundation 5.1 Nonlinear Euler–Bernoulli Beam Model 5.2 OAFM for Free Oscillations of Euler–Bernoulli Beam 5.3 Numerical Example References 6 Nonlinear Vibrations of Doubly Clamped Nanobeam Incorporating the Casimir Force 6.1 Nonlinear Equation for Nanobeam 6.2 Galerkin Formulation 6.3 Application of OAFM to Eqs. (6.11) and (6.12) 6.4 Numerical Example References 7 Transversal Oscillations of a Beam with Quintic Nonlinearities 7.1 The Governing Equation 7.2 OAFM for Nonlinear Differential Eq. (7.11) 7.3 Numerical Example References 8 Approximate Analytical Solutions to Jerk Equations 8.1 OAFM for Jerk Equations 8.2 Numerical Examples 8.2.1 Case 1 8.2.2 Case 2 References 9 Vibration of Nonlinear Nonlocal Elastic Column with Initial Imperfection 9.1 Equation of Motion 9.2 Application of OAFM to Vibration of Nonlinear Nonlocal Elastic Column with Initial Imperfection 9.3 Numerical Example References 10 Nonlinear Vibration of Bernoulli–Euler Beam on a Winkler Elastic Foundation 10.1 System Description 10.2 Discretization and Free Vibration of the Beam Under Study 10.3 Numerical Example References 11 The Nonlinear Thermomechanical Vibration of a Functionally Graded Beam (FGB) on Winkler-Pasternak Foundation 11.1 The Governing Equations 11.2 Application of OAFM to Eqs. (11.33) and (11.36) 11.3 Numerical Examples References 12 Nonlinear Free Vibration of Microtubes 12.1 Problem Formulation 12.2 Free Vibration of the Microtube 12.3 OAFM for Eqs. (12.16) and (12.18) 12.4 Numerical Example References 13 Nonlinear Free Vibration of Elastically Actuated Microtubes 13.1 Problem Formulations 13.2 Free Vibration of the Microtube 13.3 Application of OAFM to Elastically Actuated Microtube 13.4 Numerical Examples References 14 Analytical Investigation to Duffing Harmonic Oscillator 14.1 OAFM for Duffing Harmonic Oscillator 14.2 Numerical Examples References 15 Free Vibration of Tapered Beams 15.1 OAFM for Free Vibration of Tapered Beams 15.2 Numerical Examples References 16 Dynamic Analysis of a Rotating Electrical Machine Rotor-Bearing System 16.1 Application of OAFM to the Investigation of Nonlinear Vibration of the Considered Electrical Machine 16.2 Numerical Example References 17 Investigation of a Permanent Magnet Synchronous Generator 17.1 Governing Equations of PMSG 17.2 Approximate Solution of Eqs. (17.11) and (17.10) References 18 Dynamic Response of a Permanent Magnet Synchronous Generator to a Wind Gust 18.1 Approximate Solution of the Dynamic Model of the Wind-Power System References 19 Axisymmetric Flow and Heat Transfer on a Moving Cylinder 19.1 Equations of Motion 19.2 Optimal Auxiliary Functions Method for Solving the System (3.17.9)–( 3.17.18) 19.3 Numerical Results References 20 Blasius Problem 20.1 The Governing Equation 20.2 Approximate Solution of the Blasius Problem 20.3 Discussion References 21 Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder 21.1 Governing Equations of Thin Film Flow of a Fourth Grade Fluid Down a Vertical Cylinder 21.2 Approximate Solution of the Eqs. (21.8) and (21.9) 21.3 Numerical Example for the First Alternative 21.4 Numerical Results by OAFM (The Second Alternative) References 22 Viscous Flow Due to a Stretching Surface with Partial Slip 22.1 The Governing Equations 22.2 Application of OAFM to Viscous Fluid Given by Eqs. (22.8), (22.10), (22.11) and (22.12) 22.3 Numerical Examples References 23 Axisymmetric MHD Flow and Heat Transfer to Modified Second Grade Fluid 23.1 The Governing Equations 23.2 OAFM for Solving the System (23.18), (23.19), (23.21), (23.22) 23.3 Numerical Examples 23.3.1 Example 1 23.3.2 Example 2 23.3.3 Example 3 References 24 Thin Film Flow of an Eyring Powel Fluid on a Vertical Moving Belt 24.1 The Governing Equation of Motion 24.2 Numerical Examples 24.2.1 Case 1 24.2.2 Case 2 24.2.3 Case 3 References 25 The Steady Flow of a Fourth Grade Fluid in a Porous Medium 25.1 The Governing Equations 25.2 OAFM for the Steady Flow of a Fourth Grade Fluid in a Porous Medium 25.2.1 Case 1 25.2.2 Case 2 25.2.3 Case 3 25.2.4 Case 4 25.2.5 Case 5 25.2.6 Case 6 25.2.7 Case 7 25.2.8 Case 8 25.2.9 Case 9 25.2.10 Case 10 25.2.11 Case 11 25.2.12 Case 12 25.2.13 Case 13 25.2.14 Case 14 References 26 Thin Film Flow of an Oldroyd Six-Constant Fluid Over a Moving Belt 26.1 Governing Equations 26.2 OAFM for Eqs. (26.15) and (26.16) References 27 Cylindrical Liouville-Bratu-Gelfand Problem 27.1 OAFM for Cylindrical Liouville-Bratu-Gelfand Problem 27.1.1 Case A 27.1.2 Case B 27.2 Numerical Examples 27.2.1 Case A 27.2.2 Case B 27.2.3 Case C References 28 The Polytrophic Spheres of the Nonlinear Lane—Emden—Type Equation Arising in Astrophysics 28.1 The Nonlinear Lane—Emden Equation 28.2 OAFM for the Polytrophic Spheres of the Lane—Emden Equation 28.2.1 Case 1 28.2.2 Case 2 References Part III Some Variants and Modifications of the Basic Optimal Auxiliary Functions Method 29 The Second Alternative to the Optimal Auxiliary Functions Method 29.1 Dynamic Response of a Permanent Magnet Synchronous Generator to a Wind Gust 29.1.1 Application of an Alternative of OAFM to the Considered Problem (29.16) and (29.17) 29.1.2 Numerical Examples 29.2 Lambert W Function with Application in Electronics and Seismic Waves 29.2.1 Evaluation of the Lambert W Function by OAFM 29.2.2 Application of the Lambert Function in Electronics and Seismic Waves 29.3 Nonlinear Blasius and Sakiadis Flows 29.3.1 Approximate Solutions for the Blasius and Sakiadis Problems Using the Alternative of the OAFM 29.4 Poisson–Boltzman (P.B) Equations 29.4.1 P.B Equation for a Charged Rod in Absence of Added Salt 29.4.2 OAFM for P.B given by Eqs. (29.134) and (29.135) 29.4.3 Numerical Examples References 30 Piecewise Optimal Auxiliary Functions Method 30.1 The Lane-Emden Equation of the Second Kind 30.1.1 The Nonlinear Lane-Emden Equation of the Second Kind 30.1.2 POAFM for the Lane-Emden Equation of Second Kind References 31 Some Exact Solutions for Nonlinear Dynamical Systems by Means of the Optimal Auxiliary Functions Method 31.1 Some Exact Solutions for MHD Flow and Heat Transfer to Modified Second Grade Fluid with Variable Thermal Conductivity in the Presence of Thermal Radiation and Heat Generation/Absorption 31.1.1 Some Exact Solutions for Eqs. (31.6)–(31.9) Using OAFM 31.2 Exact Solutions of Nonlinear Dynamical Systems Arising in Fluid Dynamics 31.2.1 Case 1. The Flow of a Fourth Grade Fluid Past a Porous Plate 31.2.2 Case 2. The Flow of a Second Grade Fluid Over a Stretching Sheet with Suction/Injection 31.2.3 Case 3. Thin Film of an Oldroyd 6-Constant Fluid Over a Moving Belt 31.2.4 Case 4. Viscous Flow Due to a Stretching Surface with Partial Slip 31.2.5 Case 5. Thermal Radiation on MHD Flow Over a Stretching Porous Sheet 31.2.6 Case 6. Upper-Convected Maxwell Fluid Over a Porous Stretching Plate 31.2.7 Case 7. Unsteady Viscous Flow Over a Shrinking Cylinder 31.2.8 Case 8. The Flow of a Viscous Incompressible Fluid Over a Porous Stretching Wall 31.3 Exact Solutions to Oscillations of Some Nonlinear Dynamical Systems 31.3.1 Oscillations of a Uniform Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary Inertia 31.3.2 Nonlinear Jerk Equations 31.4 Exact Solutions to Duffing Equation 31.5 Solutions of the Double-Well Duffing Equation References