ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Optics

دانلود کتاب اپتیک

Optics

مشخصات کتاب

Optics

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780073380483 
ناشر: MGH 
سال نشر: 2009 
تعداد صفحات: 573 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اپتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover Page
ABOUT THE AUTHOR
Title Page
Copyright Page
Preface
CONTENTS
Part
	1. History of Optics
		References
	2. What Is Light?
		2.1 Introduction
		2.2 The Corpuscular Model
		2.3 The Wave Model
		2.4 The Particle Nature of Radiation
		2.5 Wave Nature of Matter
		2.6 The Uncertainty Principle
		2.7 The Single-Slit Diffraction Experiment
		2.8 The Probabilistic Interpretation of Matter Waves
		2.9 An Understanding of Interference Experiments
		2.10 The Polarization of a Photon
		2.11 The Time-Energy Uncertainty Relation
		Summary
		Problems
		Solutions
		References and Suggested Readings
Part 1 Geometrical Optics
	3. Fermat’s Principle and Its Applications
		3.1 Introduction
		3.2 Laws of Reflection and Refraction from Fermat’s Principle
		3.3 Ray Paths in an Inhomogeneous Medium
		3.4 The Ray Equation and its Solutions
		3.5 Refraction of Rays at the Interface between an Isotropic Medium and an Anisotropic Medium
		Summary
		Problems
		References and Suggested Readings
	4. Refraction and Reflection by Spherical Surfaces
		4.1 Introduction
		4.2 Refraction at a Single Spherical Surface
		4.3 Reflection by a Single Spherical Surface
		4.4 The Thin Lens
		4.5 The Principal Foci and Focal Lengths of a Lens
		4.6 The Newton Formula
		4.7 Lateral Magnification
		4.8 Aplanatic Points of a Sphere
		4.9 The Cartesian Oval
		4.10 Geometrical Proof for the Existence of Aplanatic Points
		4.11 The Sine Condition
		Summary
		Problems
		References and Suggested Readings
	5. The Matrix Method in Paraxial Optics
		5.1 Introduction
		5.2 The Matrix Method
		5.3 Unit Planes
		5.4 Nodal Planes
		5.5 A System of Two Thin Lenses
		Summary
		Problems
		References and Suggested Readings
	6. Aberrations
		6.1 Introduction
		6.2 Chromatic Aberration
		6.3 Monochromatic Aberrations
		Summary
		Problems
		References and Suggested Readings
Part 2 Vibrations and Waves
	7. Simple Harmonic Motion, Forced Vibrations, and Origin of Refractive Index
		7.1 Introduction
		7.2 Simple Harmonic Motion
		7.3 Damped Simple Harmonic Motion
		7.4 Forced Vibrations
		7.5 Origin of Refractive Index
		7.6 Rayleigh Scattering
		Summary
		Problems
		References and Suggested Readings
	8. Fourier Series and Applications
		8.1 Introduction
		8.2 Transverse Vibrations of a Plucked String
		8.3 Application of Fourier Series in Forced Vibrations
		8.4 The Fourier Integral
		Summary
		Problems
		References and Suggested Readings
	9. The Dirac Delta Function and Fourier Transforms
		9.1 Introduction
		9.2 Representations of the Dirac Delta Function
		9.3 Integral Representation of the Delta Function
		9.4 Delta Function as a Distribution
		9.5 Fourier Integral Theorem
		9.6 The Two- and Three-Dimensional Fourier Transform
		Summary
		Problems
	10. Group Velocity and Pulse Dispersion
		10.1 Introduction
		10.2 Group Velocity
		10.3 Group Velocity of a Wave Packet
		10.4 Self Phase Modulation
		Summary
		Problems
		References and Suggested Readings
	11. Wave Propagation and the Wave Equation
		11.1 Introduction
		11.2 Sinusoidal Waves: Concept of Frequency and Wavelength
		11.3 Types of Waves
		11.4 Energy Transport in Wave Motion
		11.5 The One-Dimensional Wave Equation
		11.6 Transverse Vibrations of a Stretched String
		11.7 Longitudinal Sound Waves in a Solid
		11.8 Longitudinal Waves in a Gas
		11.9 The General Solution of the One-Dimensional Wave Equation
		Summary
		Problems
		References and Suggested Readings
	12. Huygens’ Principle and Its Applications
		12.1 Introduction
		12.2 Huygens’ Theory
		12.3 Rectilinear Propagation
		12.4 Application of Huygens’ Principle to Study Refraction and Reflection
		Summary
		Problems
		References and Suggested Readings
Part 3 Interference
	13. Superposition of Waves
		13.1 Introduction
		13.2 Stationary Waves on a String
		13.3 Stationary Waves on a String Whose Ends are Fixed
		13.4 Stationary Light Waves: Ives’ and Wiener’s Experiments
		13.5 Superposition of Two Sinusoidal Waves
		13.6 The Graphical Method for Studying Superposition of Sinusoidal Waves
		13.7 The Complex Representation
		Summary
		Problems
		References and Suggested Readings
	14. Two-Beam Interference by Division of Wave Front
		14.1 Introduction
		14.2 Interference Pattern Produced on the Surface of Water
		14.3 Coherence
		14.4 Interference of Light Waves
		14.5 The Interference Pattern
		14.6 The Intensity Distribution
		14.7 Fresnel’s Two-Mirror Arrangement
		14.8 Fresnel Biprism
		14.9 Interference with White Light
		14.10 Displacement of Fringes
		14.11 Lloyd’s Mirror Arrangement
		14.12 Phase Change on Reflection
		Summary
		Problems
		References and Suggested Readings
	15. Interference by Division of Amplitude
		15.1 Introduction
		15.2 Interference by a Plane Parallel Film When Illuminated by a Plane Wave
		15.3 The Cosine Law
		15.4 Nonreflecting Films
		15.5 High Reflectivity by Thin Film Deposition
		15.6 Reflection by a Periodic Structure
		15.7 Interference by a Plane Parallel Film When Illuminated by a Point Source
		15.8 Interference by a Film with Two Nonparallel Reflecting Surfaces
		15.9 Colors of Thin Films
		15.10 Newton’s Rings
		15.11 The Michelson Interferometer
		Summary
		Problems
		References and Suggested Readings
	16. Multiple-Beam Interferometry
		16.1 Introduction
		16.2 Multiple Reflections from a Plane Parallel Film
		16.3 The Fabry–Perot Etalon
		16.4 The Fabry–Perot Interferometer
		16.5 Resolving Power
		16.6 The Lummer–Gehrcke Plate
		16.7 Interference Filters
		Summary
		Problems
		References and Suggested Readings
	17. Coherence
		17.1 Introduction
		17.2 The Line Width
		17.3 The Spatial Coherence
		17.4 Michelson Stellar Interferometer
		17.5 Optical Beats
		17.6 Coherence Time and Line Width via Fourier Analysis
		17.7 Complex Degree of Coherence and Fringe Visibility in Young’s Double-Hole Experiment
		17.8 Fourier Transform Spectroscopy
		Summary
		Problems
		References and Suggested Readings
Part 4 Diffraction
	18. Fraunhofer Diffraction I
		18.1 Introduction
		18.2 Single-Slit Diffraction Pattern
		18.3 Diffraction by a Circular Aperture
		18.4 Directionality of Laser Beams
		18.5 Limit of Resolution
		18.6 Two-Slit Fraunhofer Diffraction Pattern
		18.7 N-Slit Fraunhofer Diffraction Pattern
		18.8 The Diffraction Grating
		18.9 Oblique Incidence
		18.10 X-ray Diffraction
		18.11 The Self-Focusing Phenomenon
		18.12 Optical Media Technology—An Essay
		Summary
		Problems
		References and Suggested Readings
	19. Fraunhofer Diffraction II and Fourier Optics
		19.1 Introduction
		19.2 The Fresnel Diffraction Integral
		19.3 Uniform Amplitude and Phase Distribution
		19.4 The Fraunhofer Approximation
		19.5 Fraunhofer Diffraction by a Long Narrow Slit
		19.6 Fraunhofer Diffraction by a Rectangular Aperture
		19.7 Fraunhofer Diffraction by a Circular Aperture
		19.8 Array of Identical Apertures
		19.9 Spatial Frequency Filtering
		19.10 The Fourier Transforming Property of a Thin Lens
		Summary
		Problems
		References and Suggested Readings
	20. Fresnel Diffraction
		20.1 Introduction
		20.2 Fresnel Half-Period Zones
		20.3 The Zone Plate
		20.4 Fresnel Diffraction—A More Rigorous Approach
		20.5 Gaussian Beam Propagation
		20.6 Diffraction by a Straight edge
		20.7 Diffraction of a Plane Wave by a Long Narrow Slit and Transition to the Fraunhofer Region
		Summary
		Problems
		References and Suggested Readings
	21. Holography
		21.1 Introduction
		21.2 Theory
		21.3 Requirements
		21.4 Some Applications
		Summary
		Problems
		References and Suggested Readings
Part 5 Electromagnetic Character of Light
	22. Polarization and Double Refraction
		22.1 Introduction
		22.2 Production of Polarized Light
		22.3 Malus’ Law
		22.4 Superposition of Two Disturbances
		22.5 The Phenomenon of Double Refraction
		22.6 Interference of Polarized Light: Quarter Wave Plates and Half Wave Plates
		22.7 Analysis of Polarized Light
		22.8 Optical Activity
		22.9 Change in the SOP (State of Polarization) of a Light Beam Propagating Through an Elliptic Core Single-Mode Optical Fiber
		22.10 Wollaston Prism
		22.11 Rochon Prism
		22.12 Plane Wave Propagation in Anisotropic Media
		22.13 Ray Velocity and Ray Refractive Index
		22.14 Jones’ Calculus
		22.15 Faraday Rotation
		22.16 Theory of Optical Activity
		Summary
		Problems
		References and Suggested Readings
	23. Electromagnetic Waves
		23.1 Maxwell’s Equations
		23.2 Plane Waves in a Dielectric
		23.3 The Three-Dimensional Wave Equation in a Dielectric
		23.4 The Poynting Vector
		23.5 Energy Density and Intensity of an Electromagnetic Wave
		23.6 Radiation Pressure
		23.7 The Wave Equation in a Conducting Medium
		23.8 The Continuity Conditions
		23.9 Physical Significance of Maxwell’s Equations
		Summary
		Problems
		References and Suggested Readings
	24. Reflection and Refraction of Electromagnetic Waves
		24.1 Introduction
		24.2 Reflection and Defraction at an Interface of Two Dielectrics
		24.3 Reflection by a Conducting Medium
		24.4 Reflectivity of a Dielectric Film
		Summary
		Problems
		References and Suggested Readings
Part 6 Photons
	25. The Particle Nature of Radiation
		25.1 Introduction
		25.2 The Photoelectric Effect
		25.3 The Compton Effect
		25.4 The Photon Mass
		25.5 Angular Momentum of a Photon
		Summary
		Problems
		References and Suggested Readings
Part 7 Lasers and Fiber Optics
	26. Lasers: An Introduction
		26.1 Introduction
		26.2 The Fiber Laser
		26.3 The Ruby Laser
		26.4 The He-Ne Laser
		26.5 Optical Resonators
		26.6 Einstein Coefficients and Optical Amplification
		26.7 The Line Shape Function
		26.8 Typical Parameters for a Ruby Laser
		26.9 Monochromaticity of the Laser Beam
		26.10 Raman Amplification and Raman Laser
		Summary
		Problems
		References and Suggested Readings
	27. Optical Waveguides I: Optical Fiber Basics Using Ray Optics
		27.1 Introduction
		27.2 Some Historical Remarks
		27.3 Total Internal Reflection
		27.4 The Optical Fiber
		27.5 Why Glass Fibers?
		27.6 The Coherent Bundle
		27.7 The Numerical Aperture
		27.8 Attenuation in Optical Fibers
		27.9 Multimode Fibers
		27.10 Pulse Dispersion in Multimode Optical Fibers
		27.11 Dispersion and Maximum Bit Rates
		27.12 General Expression for Ray Dispersion Corresponding to a Power Law Profile
		27.13 Plastic Optical Fibers
		27.14 Fiber-Optic Sensors
		Problems
		References and Suggested Readings
	28. Optical Waveguides II: Basic Waveguide Theory and Concept of Modes
		28.1 Introduction
		28.2 TE Modes of a Symmetric Step Index Planar Waveguide
		28.3 Physical Understanding of Modes
		28.4 TM Modes of a Symmetric Step Index Planar Waveguide
		28.5 TE Modes of a Parabolic Index Planar Waveguide
		28.6 Waveguide Theory and Quantum Mechanics
		Problems
		References and Suggested Readings
	29. Optical Waveguides III: Single-Mode Fibers
		29.1 Introduction
		29.2 Basic Equations
		29.3 Guided Modes of a Step Index Fiber
		29.4 Single-Mode Fiber
		29.5 Pulse Dispersion in Single-Mode Fibers
		29.6 Dispersion Compensating Fibers
		Problems
		References and Suggested Readings
Part 8 Special Theory of Relativity
	30. Special Theory of Relativity I: Time Dilation and Length Contraction
		30.1 Introduction
		30.2 Speed of Light for a Moving Source
		30.3 Time Dilation
		30.4 The Mu Meson Experiment
		30.5 The Length Contraction
		30.6 Understanding the Mu Meson Experiment via Length Contraction
		30.7 Length Contraction of a Moving Train
		30.8 Simultaneity of Two Events
		30.9 The Twin Paradox
		30.10 The Michelson–Morley Experiment
		30.11 Brief Historical Remarks
		Problems
		References and Suggested Readings
	31. Special Theory of Relativity II: Mass-Energy Relationship and Lorentz Transformations
		31.1 Introduction
		31.2 The Mass-Energy Relationship
		31.3 The Doppler Shift
		31.4 The Lorentz Transformation
		31.5 Addition of Velocities
		References and Suggested Readings
Appendix A: Gamma Functions and Integrals Involving Gaussian Functions
Appendix B: Evaluation of the Integral
Appendix C: The Reflectivity of a Fiber Bragg Grating
Appendix D: Diffraction of a Gaussian Beam
Appendix E: TE and TM Modes in Planar Waveguides
Appendix F: Solution for the Parabolic Index Waveguide
Appendix G: Invariance of the Wave Equation Under Lorentz Transformation
Name Index
Subject Index




نظرات کاربران