دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ghatak A.
سری:
ISBN (شابک) : 9780073380483
ناشر: MGH
سال نشر: 2009
تعداد صفحات: 573
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Optics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اپتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Page ABOUT THE AUTHOR Title Page Copyright Page Preface CONTENTS Part 1. History of Optics References 2. What Is Light? 2.1 Introduction 2.2 The Corpuscular Model 2.3 The Wave Model 2.4 The Particle Nature of Radiation 2.5 Wave Nature of Matter 2.6 The Uncertainty Principle 2.7 The Single-Slit Diffraction Experiment 2.8 The Probabilistic Interpretation of Matter Waves 2.9 An Understanding of Interference Experiments 2.10 The Polarization of a Photon 2.11 The Time-Energy Uncertainty Relation Summary Problems Solutions References and Suggested Readings Part 1 Geometrical Optics 3. Fermat’s Principle and Its Applications 3.1 Introduction 3.2 Laws of Reflection and Refraction from Fermat’s Principle 3.3 Ray Paths in an Inhomogeneous Medium 3.4 The Ray Equation and its Solutions 3.5 Refraction of Rays at the Interface between an Isotropic Medium and an Anisotropic Medium Summary Problems References and Suggested Readings 4. Refraction and Reflection by Spherical Surfaces 4.1 Introduction 4.2 Refraction at a Single Spherical Surface 4.3 Reflection by a Single Spherical Surface 4.4 The Thin Lens 4.5 The Principal Foci and Focal Lengths of a Lens 4.6 The Newton Formula 4.7 Lateral Magnification 4.8 Aplanatic Points of a Sphere 4.9 The Cartesian Oval 4.10 Geometrical Proof for the Existence of Aplanatic Points 4.11 The Sine Condition Summary Problems References and Suggested Readings 5. The Matrix Method in Paraxial Optics 5.1 Introduction 5.2 The Matrix Method 5.3 Unit Planes 5.4 Nodal Planes 5.5 A System of Two Thin Lenses Summary Problems References and Suggested Readings 6. Aberrations 6.1 Introduction 6.2 Chromatic Aberration 6.3 Monochromatic Aberrations Summary Problems References and Suggested Readings Part 2 Vibrations and Waves 7. Simple Harmonic Motion, Forced Vibrations, and Origin of Refractive Index 7.1 Introduction 7.2 Simple Harmonic Motion 7.3 Damped Simple Harmonic Motion 7.4 Forced Vibrations 7.5 Origin of Refractive Index 7.6 Rayleigh Scattering Summary Problems References and Suggested Readings 8. Fourier Series and Applications 8.1 Introduction 8.2 Transverse Vibrations of a Plucked String 8.3 Application of Fourier Series in Forced Vibrations 8.4 The Fourier Integral Summary Problems References and Suggested Readings 9. The Dirac Delta Function and Fourier Transforms 9.1 Introduction 9.2 Representations of the Dirac Delta Function 9.3 Integral Representation of the Delta Function 9.4 Delta Function as a Distribution 9.5 Fourier Integral Theorem 9.6 The Two- and Three-Dimensional Fourier Transform Summary Problems 10. Group Velocity and Pulse Dispersion 10.1 Introduction 10.2 Group Velocity 10.3 Group Velocity of a Wave Packet 10.4 Self Phase Modulation Summary Problems References and Suggested Readings 11. Wave Propagation and the Wave Equation 11.1 Introduction 11.2 Sinusoidal Waves: Concept of Frequency and Wavelength 11.3 Types of Waves 11.4 Energy Transport in Wave Motion 11.5 The One-Dimensional Wave Equation 11.6 Transverse Vibrations of a Stretched String 11.7 Longitudinal Sound Waves in a Solid 11.8 Longitudinal Waves in a Gas 11.9 The General Solution of the One-Dimensional Wave Equation Summary Problems References and Suggested Readings 12. Huygens’ Principle and Its Applications 12.1 Introduction 12.2 Huygens’ Theory 12.3 Rectilinear Propagation 12.4 Application of Huygens’ Principle to Study Refraction and Reflection Summary Problems References and Suggested Readings Part 3 Interference 13. Superposition of Waves 13.1 Introduction 13.2 Stationary Waves on a String 13.3 Stationary Waves on a String Whose Ends are Fixed 13.4 Stationary Light Waves: Ives’ and Wiener’s Experiments 13.5 Superposition of Two Sinusoidal Waves 13.6 The Graphical Method for Studying Superposition of Sinusoidal Waves 13.7 The Complex Representation Summary Problems References and Suggested Readings 14. Two-Beam Interference by Division of Wave Front 14.1 Introduction 14.2 Interference Pattern Produced on the Surface of Water 14.3 Coherence 14.4 Interference of Light Waves 14.5 The Interference Pattern 14.6 The Intensity Distribution 14.7 Fresnel’s Two-Mirror Arrangement 14.8 Fresnel Biprism 14.9 Interference with White Light 14.10 Displacement of Fringes 14.11 Lloyd’s Mirror Arrangement 14.12 Phase Change on Reflection Summary Problems References and Suggested Readings 15. Interference by Division of Amplitude 15.1 Introduction 15.2 Interference by a Plane Parallel Film When Illuminated by a Plane Wave 15.3 The Cosine Law 15.4 Nonreflecting Films 15.5 High Reflectivity by Thin Film Deposition 15.6 Reflection by a Periodic Structure 15.7 Interference by a Plane Parallel Film When Illuminated by a Point Source 15.8 Interference by a Film with Two Nonparallel Reflecting Surfaces 15.9 Colors of Thin Films 15.10 Newton’s Rings 15.11 The Michelson Interferometer Summary Problems References and Suggested Readings 16. Multiple-Beam Interferometry 16.1 Introduction 16.2 Multiple Reflections from a Plane Parallel Film 16.3 The Fabry–Perot Etalon 16.4 The Fabry–Perot Interferometer 16.5 Resolving Power 16.6 The Lummer–Gehrcke Plate 16.7 Interference Filters Summary Problems References and Suggested Readings 17. Coherence 17.1 Introduction 17.2 The Line Width 17.3 The Spatial Coherence 17.4 Michelson Stellar Interferometer 17.5 Optical Beats 17.6 Coherence Time and Line Width via Fourier Analysis 17.7 Complex Degree of Coherence and Fringe Visibility in Young’s Double-Hole Experiment 17.8 Fourier Transform Spectroscopy Summary Problems References and Suggested Readings Part 4 Diffraction 18. Fraunhofer Diffraction I 18.1 Introduction 18.2 Single-Slit Diffraction Pattern 18.3 Diffraction by a Circular Aperture 18.4 Directionality of Laser Beams 18.5 Limit of Resolution 18.6 Two-Slit Fraunhofer Diffraction Pattern 18.7 N-Slit Fraunhofer Diffraction Pattern 18.8 The Diffraction Grating 18.9 Oblique Incidence 18.10 X-ray Diffraction 18.11 The Self-Focusing Phenomenon 18.12 Optical Media Technology—An Essay Summary Problems References and Suggested Readings 19. Fraunhofer Diffraction II and Fourier Optics 19.1 Introduction 19.2 The Fresnel Diffraction Integral 19.3 Uniform Amplitude and Phase Distribution 19.4 The Fraunhofer Approximation 19.5 Fraunhofer Diffraction by a Long Narrow Slit 19.6 Fraunhofer Diffraction by a Rectangular Aperture 19.7 Fraunhofer Diffraction by a Circular Aperture 19.8 Array of Identical Apertures 19.9 Spatial Frequency Filtering 19.10 The Fourier Transforming Property of a Thin Lens Summary Problems References and Suggested Readings 20. Fresnel Diffraction 20.1 Introduction 20.2 Fresnel Half-Period Zones 20.3 The Zone Plate 20.4 Fresnel Diffraction—A More Rigorous Approach 20.5 Gaussian Beam Propagation 20.6 Diffraction by a Straight edge 20.7 Diffraction of a Plane Wave by a Long Narrow Slit and Transition to the Fraunhofer Region Summary Problems References and Suggested Readings 21. Holography 21.1 Introduction 21.2 Theory 21.3 Requirements 21.4 Some Applications Summary Problems References and Suggested Readings Part 5 Electromagnetic Character of Light 22. Polarization and Double Refraction 22.1 Introduction 22.2 Production of Polarized Light 22.3 Malus’ Law 22.4 Superposition of Two Disturbances 22.5 The Phenomenon of Double Refraction 22.6 Interference of Polarized Light: Quarter Wave Plates and Half Wave Plates 22.7 Analysis of Polarized Light 22.8 Optical Activity 22.9 Change in the SOP (State of Polarization) of a Light Beam Propagating Through an Elliptic Core Single-Mode Optical Fiber 22.10 Wollaston Prism 22.11 Rochon Prism 22.12 Plane Wave Propagation in Anisotropic Media 22.13 Ray Velocity and Ray Refractive Index 22.14 Jones’ Calculus 22.15 Faraday Rotation 22.16 Theory of Optical Activity Summary Problems References and Suggested Readings 23. Electromagnetic Waves 23.1 Maxwell’s Equations 23.2 Plane Waves in a Dielectric 23.3 The Three-Dimensional Wave Equation in a Dielectric 23.4 The Poynting Vector 23.5 Energy Density and Intensity of an Electromagnetic Wave 23.6 Radiation Pressure 23.7 The Wave Equation in a Conducting Medium 23.8 The Continuity Conditions 23.9 Physical Significance of Maxwell’s Equations Summary Problems References and Suggested Readings 24. Reflection and Refraction of Electromagnetic Waves 24.1 Introduction 24.2 Reflection and Defraction at an Interface of Two Dielectrics 24.3 Reflection by a Conducting Medium 24.4 Reflectivity of a Dielectric Film Summary Problems References and Suggested Readings Part 6 Photons 25. The Particle Nature of Radiation 25.1 Introduction 25.2 The Photoelectric Effect 25.3 The Compton Effect 25.4 The Photon Mass 25.5 Angular Momentum of a Photon Summary Problems References and Suggested Readings Part 7 Lasers and Fiber Optics 26. Lasers: An Introduction 26.1 Introduction 26.2 The Fiber Laser 26.3 The Ruby Laser 26.4 The He-Ne Laser 26.5 Optical Resonators 26.6 Einstein Coefficients and Optical Amplification 26.7 The Line Shape Function 26.8 Typical Parameters for a Ruby Laser 26.9 Monochromaticity of the Laser Beam 26.10 Raman Amplification and Raman Laser Summary Problems References and Suggested Readings 27. Optical Waveguides I: Optical Fiber Basics Using Ray Optics 27.1 Introduction 27.2 Some Historical Remarks 27.3 Total Internal Reflection 27.4 The Optical Fiber 27.5 Why Glass Fibers? 27.6 The Coherent Bundle 27.7 The Numerical Aperture 27.8 Attenuation in Optical Fibers 27.9 Multimode Fibers 27.10 Pulse Dispersion in Multimode Optical Fibers 27.11 Dispersion and Maximum Bit Rates 27.12 General Expression for Ray Dispersion Corresponding to a Power Law Profile 27.13 Plastic Optical Fibers 27.14 Fiber-Optic Sensors Problems References and Suggested Readings 28. Optical Waveguides II: Basic Waveguide Theory and Concept of Modes 28.1 Introduction 28.2 TE Modes of a Symmetric Step Index Planar Waveguide 28.3 Physical Understanding of Modes 28.4 TM Modes of a Symmetric Step Index Planar Waveguide 28.5 TE Modes of a Parabolic Index Planar Waveguide 28.6 Waveguide Theory and Quantum Mechanics Problems References and Suggested Readings 29. Optical Waveguides III: Single-Mode Fibers 29.1 Introduction 29.2 Basic Equations 29.3 Guided Modes of a Step Index Fiber 29.4 Single-Mode Fiber 29.5 Pulse Dispersion in Single-Mode Fibers 29.6 Dispersion Compensating Fibers Problems References and Suggested Readings Part 8 Special Theory of Relativity 30. Special Theory of Relativity I: Time Dilation and Length Contraction 30.1 Introduction 30.2 Speed of Light for a Moving Source 30.3 Time Dilation 30.4 The Mu Meson Experiment 30.5 The Length Contraction 30.6 Understanding the Mu Meson Experiment via Length Contraction 30.7 Length Contraction of a Moving Train 30.8 Simultaneity of Two Events 30.9 The Twin Paradox 30.10 The Michelson–Morley Experiment 30.11 Brief Historical Remarks Problems References and Suggested Readings 31. Special Theory of Relativity II: Mass-Energy Relationship and Lorentz Transformations 31.1 Introduction 31.2 The Mass-Energy Relationship 31.3 The Doppler Shift 31.4 The Lorentz Transformation 31.5 Addition of Velocities References and Suggested Readings Appendix A: Gamma Functions and Integrals Involving Gaussian Functions Appendix B: Evaluation of the Integral Appendix C: The Reflectivity of a Fiber Bragg Grating Appendix D: Diffraction of a Gaussian Beam Appendix E: TE and TM Modes in Planar Waveguides Appendix F: Solution for the Parabolic Index Waveguide Appendix G: Invariance of the Wave Equation Under Lorentz Transformation Name Index Subject Index