دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Daniel Axelrod
سری: Biophysical Society–IOP Series
ISBN (شابک) : 0750333499, 9780750333498
ناشر: IOP Publishing
سال نشر: 2022
تعداد صفحات: 197
[198]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Optical Evanescence Microscopy (TIRF): Total Internal Reflection Excitation and Near Field Emission به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکروسکوپ تبخیر نوری (TIRF): برانگیختگی بازتاب داخلی کل و انتشار میدان نزدیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book offers a complete presentation of the physics, math, and experimental setups for both TIRF and related evanescence microscopies. It covers evanescence in both fluorescence excitation or emission. It also discusses, in detail, the theory, setups, and practical biological/biochemical applications for combinations of evanescence microscopies with other optical techniques such as polarization, photobleaching, correlation spectroscopy, scattering, image enhancement, optical force, two-photon, energy transfer, structured illumination, scanning, quenching, and single molecule detection. Physical and qualitative discussions augment the rigorous math, making the book accessible and interesting to a wide range of audiences with backgrounds from biology to chemistry to physics. The book also contains useful step-by-step guides to building, modifying, and aligning TIRF microscopy systems for specialized purposes. Key Features: Suitable for both basic and advanced levels Offers combinations with related techniques Relationship of evanescent effects between excitation and emission explained Practical guide to the optics as well
PRELIMS.pdf Preface and acknowledgments Author biography Daniel Axelrod CH001.pdf Chapter 1 Introduction to optical evanescence 1.1 Overview 1.2 Applications to biochemistry and cell biology 1.2.1 Cell/substrate contact regions 1.2.2 Long-term videos of living cells 1.2.3 Secretory granule tracking and exocytosis 1.2.4 Single molecules 1.2.5 Reversibly bound and mobile fluorescent ligands on cells and biosurfaces 1.2.6 Cytoplasmic filaments 1.2.7 Calcium channels and transients 1.2.8 CRISPR 1.2.9 Orientational distributions of fluorescent molecules at a surface 1.2.10 Combinations and comparisons with other microscopy techniques 1.3 Ray picture of total internal reflection 1.4 Maxwell’s equations and wave numbers 1.5 Causes of evanescence: a physical view 1.5.1 Total internal reflection 1.5.2 Small aperture 1.5.3 Waveguides 1.5.4 Near-field emission Further reading CH002.pdf Chapter 2 Total internal reflection theory 2.1 Rays and TIR 2.2 Waves and TIR 2.3 Evanescent intensity 2.4 Finite-width incident beams: the Goos–Hänchen shift 2.5 Reflected intensities Further reading CH003.pdf Chapter 3 Structure in the lower-index material 3.1 Light absorption in medium 1 3.2 Intermediate layers 3.2.1 Field and intensity in medium 1 (z ≥ 0) 3.2.2 Field and intensity in medium 2 (−h < z < 0) 3.2.3 Field and intensity in medium 3 (z < − h) 3.3 Metal films and surface plasmons 3.4 Slab waveguides 3.5 Total internal reflection scattering 3.5.1 Fundamental equations 3.5.2 Parameter definitions 3.5.3 Green’s function solution for the perturbative approach 3.5.4 Inclusion of the local case r = r′ 3.5.5 Reporting surface selectivity: intensity and evanescent depth Further reading CH004.pdf Chapter 4 Emission of fluorophores near a surface 4.1 The emission near field: a semi-qualitative view 4.2 Capture of the near field: summary of quantitative theory 4.3 Polarization of the emitted electric field 4.4 Emitted intensity and total power 4.5 Emitted intensity vs polar angle 4.6 Total fluorescence collection through a microscope objective 4.6.1 Single dipole: integration over azimuthal angles 4.6.2 Single dipole: integration over polar angles 4.6.3 Distribution of dipoles 4.7 Pattern at the back focal plane 4.8 Characterization of films with supercritical-emission light 4.9 Effect of metal films on fluorescence emission 4.10 Pattern at the image plane 4.10.1 Approximation of the PSF: the 2D Airy disk 4.10.2 Full calculation of the PSF 4.11 Virtual supercritical angle fluorescence microscopy (vSAF) 4.12 Emission polarization including supercritical light 4.13 SAF/UAF: measurement of the absolute distance between a fluorophore and a surface 4.14 Effect of near-field capture on fluorescence lifetime Further reading CH005.pdf Chapter 5 Optical configurations and setup 5.1 Inverted microscope TIR with prism above 5.2 Inverted microscope TIR with prism below 5.3 Upright microscope TIR with prism below 5.4 Objective-based TIR 5.4.1 Focus at the back focal plane (BFP) 5.4.2 Illumination area in the field of view 5.5 Incidence angle, multicolor, and polarization control 5.5.1 Sample plane, back focal plane, and their equivalents 5.5.2 Polar incidence angle control 5.5.3 Azimuthal incidence angle control 5.5.4 Switching excitation colors 5.5.5 Excitation polarization control 5.6 Alignment 5.7 Rapid chopping between TIR and epi-illumination 5.8 Supercritical-angle fluorescence (SAF) emission setup 5.9 Imaging the back focal plane directly 5.10 Measurement of evanescent field depth 5.11 TIRF–structured illumination microscopy (TIRF–SIM) 5.11.1 Single-spot TIR with converging illumination 5.11.2 Array of TIR spots 5.11.3 Periodic sine-wave pattern 5.11.4 Periodic pattern for image enhancement 5.11.5 Spot TIR with collimated light Further reading CH006.pdf Chapter 6 Applications of TIRF microscopy and its combination with other fluorescence techniques 6.1 Refractive indices in cell cultures 6.2 Axial position and motion of cell components 6.3 Quenching with a metal film 6.4 Image sharpening in TIR 6.5 Polarized excitation TIRF 6.6 Variable-depth TIRF 6.7 Optical force in an evanescent field 6.8 TIR/FCS and TIR/FRAP 6.8.1 Adsorption/desorption chemical kinetics 6.8.2 Characteristic rates 6.8.3 RR 6.8.4 RBND 6.8.5 RSD 6.8.6 RBLD 6.8.7 Limiting solutions for an infinite observation area 6.8.8 Solutions for a finite observation area 6.8.9 TIR/FCS/FRAP to measure the diffusion coefficient in solution 6.8.10 Absolute concentrations: single component 6.8.11 Absolute concentration: mixed components 6.8.12 Higher order TIR-FCS 6.8.13 TIR/FRAP in a sub-resolution confined volume: a spherical secretory granule 6.8.14 Spatially-resolved TIR/FRAP 6.8.15 TIR/FRAP with sine wave 6.9 TIR-continuous photobleaching 6.10 TIR-FRET 6.11 Two-photon TIRF 6.11.1 Two-photon theory 6.11.2 Reduction of scattering effect 6.11.3 Requirement for high intensity 6.11.4 Two-photon sine-wave-pattern TIRF 6.11.5 Two-photon excitation with slab waveguides Further reading