دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Anshul Verma, Pradeepika Verma, Sanjay Kumar Dhurandher, Isaac Woungang سری: ISBN (شابک) : 9780367677305, 036767730X ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 330 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Opportunistic Networks: Fundamentals, Applications and Emerging Trends به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های فرصت طلب: مبانی، کاربردها و روندهای نوظهور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شبکه فرصت طلب یک حوزه تحقیقاتی نوظهور و جدید است. برای سازگاری بیشتر این حوزه تحقیقاتی برای استفاده عملی و صنعتی، نیاز به بررسی بیشتر چالش های تحقیقاتی در تمام جنبه های شبکه های فرصت طلب وجود دارد. بنابراین، شبکههای فرصتطلب: مبانی، کاربردها و روندهای نوظهور پیشرفتهای تحقیقاتی نظری، الگوریتمی، شبیهسازی و پیادهسازی مرتبط با مبانی، کاربردها و روندهای تحقیقاتی نوظهور در شبکههای فرصتطلب را ارائه میکند. این کتاب از یک رویکرد نظری برای توصیف اصول اولیه برای مبتدیان پیروی می کند و یک رویکرد عملی را در بر می گیرد که اجرای برنامه های کاربردی واقعی را برای خوانندگان متوسط و پیشرفته به تصویر می کشد. این کتاب برای دانشگاهیان، محققان، توسعهدهندگان و مهندسین که در زمینههای مرتبط با شبکههای فرصتطلب، شبکههای متحمل تاخیر و شبکههای موقت متصل به طور متناوب کار میکنند یا به آن علاقهمند هستند، مفید است. این کتاب همچنین به عنوان یک کتاب مرجع برای دوره های تحصیلات تکمیلی و کارشناسی ارشد در رشته های علوم کامپیوتر، مهندسی کامپیوتر و فناوری اطلاعات عمل می کند.
The opportunistic network is an emerging and recent area of research. To make this research area more adaptable for practical and industrial use, there is a need to further investigate several research challenges in all aspects of opportunistic networks. Therefore, Opportunistic Networks: Fundamentals, Applications and Emerging Trends provides theoretical, algorithmic, simulation, and implementation-based research developments related to fundamentals, applications, and emerging research trends in opportunistic networks. The book follows a theoretical approach to describe fundamentals to beginners and incorporates a practical approach depicting the implementation of real-life applications to intermediate and advanced readers. This book is beneficial for academicians, researchers, developers, and engineers who work in or are interested in the fields related to opportunistic networks, delay tolerant networks, and intermittently connected ad hoc networks. This book also serves as a reference book for graduate and postgraduate courses in computer science, computer engineering, and information technology streams.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Contributors Chapter 1: Mobile-Code-Based Opportunistic Networking 1.1 Introduction 1.2 Motivation 1.2.1 IP Multicast: A Case Example 1.3 Scenario Description 1.4 Active Messages 1.5 General Protocol Architecture 1.6 System Architecture Elements 1.7 Security Considerations 1.8 Reification 1.9 Primitive Services Types and Task Delegation 1.10 Dynamic Multi-Routing 1.11 Aggregation, Scheduling, and Dropping 1.12 Application Influenced Movement Model 1.13 Active Messages: A Distributed Sensing Infrastructure References Chapter 2: Opportunistic Emergency Scenarios: An Opportunistic Distributed Computing Approach 2.1 An Opportunistic Approach for Mobile-Code-Based Distributed Computing 2.1.1 Integrating DTN WSNs in Grid Computer Infrastructures Using Mobile Code 2.1.2 Grid Job Management 2.1.3 Store-Process-Carry-and-Forward Paradigm 2.1.4 Processing Models 2.1.5 Storage 2.1.6 The Routing Issue 2.1.7 Implementation 2.2 Opportunistic Emergency Scenarios Applications 2.2.1 Scenario Description 2.2.2 Dynamic Routing and Routing Algorithm Deployment 2.2.3 Alleviate DTN Congestion 2.2.4 DTN Lifetime Control 2.2.5 Dynamic Prioritized Scheduling Note References Chapter 3: Reactive and Proactive Routing Strategies in Mobile Ad Hoc Network 3.1 Introduction and Related Works 3.2 State of the Routing Strategies with Mobility Models (MM) 3.2.1 Protocols under Investigation 3.2.1.1 Ad Hoc On-Demand Distance Vector (AODV) 3.2.1.2 Dynamic Source Routing (DSR) 3.2.1.3 Destination-Sequenced Distance-Vector (DSDV) 3.2.2 Mobility Models (MM) 3.2.2.1 Random Walk (RW) 3.2.2.2 Random Waypoint (RWP) 3.2.2.3 Random Direction (RD) 3.3 Methodology and Environment Setting 3.3.1 Simulation Tool 3.3.2 Random Traffic and Mobility Generation 3.3.3 Running the NAM File and Data Sending 3.3.4 Simulation Environment Setup 3.4 Result and Discussion 3.4.1 Evaluation Metrics 3.4.2 Performance Analysis through Varying the Number of Nodes 3.4.3 Performance Analysis through Varying the Packet Sizes 3.4.4 Performance Analysis through Varying the Data Rates 3.4.5 Performance Analysis through Varying the Speed of Nodes 3.5 Conclusion Acknowledgements References Chapter 4: Secure Hierarchical Infrastructure-Based Privacy Preservation Authentication Scheme in Vehicular Ad Hoc Networks 4.1 Introduction 4.2 Related Works 4.3 Background 4.3.1 System Architecture of VANET 4.3.2 Security Requirements in VANET 4.3.2.1 Authentication 4.3.2.2 Confidentiality 4.3.2.3 Integrity 4.3.2.4 Availability 4.3.2.5 Non-repudiation 4.3.2.6 Privacy Preserving 4.4 Preliminaries 4.4.1 Elliptic Curve Diffie-Hellman (ECDH) 4.4.2 Edwards-curve Digital Signature (EdDSA) 4.5 Proposed Scheme 4.5.1 Protocol Description 4.5.2 Registration Phase 4.5.3 Authentication and Communication between OBU i and RSU i 4.5.4 Communication between Vehicles 4.5.5 Revocation 4.6 Security Analysis 4.6.1 Analysis of Security Requirements 4.6.2 Formal Verification 4.7 Performance Evaluation 4.7.1 Comparison of Security Performance 4.7.2 Computation Overhead 4.8 Conclusion References Chapter 5: Simulation Tools for Opportunistic Networks: How to Set Up and Simulate the ONE Simulator 5.1 Introduction 5.2 Routing Protocols and Mobility Models 5.3 Simulation Tools 5.3.1 ONE Simulator 5.3.2 NS-2 5.3.3 OMNeT++ 5.4 How to Install and Run the ONE Simulator 5.5 Default Settings in the ONE Simulator 5.6 Simulation Configuration for the ONE Simulator 5.7 Simulated Results and Discussion with Analysis 5.7.1 Delivery Probability 5.7.2 Average Latency 5.7.3 Overhead Ratio 5.7.4 Average Hop Count 5.7.5 Average Buffer Time 5.8 Conclusion Acknowledgements References Chapter 6: Understanding Influencers of Adaptive Social-Aware Opportunistic Forwarding 6.1 Introduction 6.2 Background and Related Work 6.2.1 Context-Adaptive Forwarding in Mobile Opportunistic Networks 6.2.2 EBubbleRap Algorithm 6.2.3 PeopleRank Algorithm 6.2.4 SCAR Algorithm 6.2.5 PI-SOFA Framework 6.2.5.1 PIPeROp Algorithm 6.2.5.2 PISCAROp Algorithm 6.2.6 Space Syntax 6.2.6.1 Space Syntax Metrics 6.2.6.2 Space Syntax-Based Forwarding Algorithms 6.3 Adaptive Ranking 6.3.1 Adaptive Ranking Framework 6.3.2 Adaptive Ranking Versions 6.4 Adaptation Proposed Implementations 6.4.1 Version 1: Adp 6.4.2 Version 2: AdpOp 6.4.3 Version 3: AdpSyn 6.4.4 Version 4: AdpSpSynOp 6.5 Evaluation 6.5.1 Simulation Environment 6.5.2 Evaluation Metrics 6.5.2.1 Effectiveness 6.5.2.2 Efficiency 6.5.2.3 Power Awareness 6.5.2.4 Normalized Performance Indices 6.6 Results 6.6.1 Interest Awareness 6.6.1.1 Effectiveness 6.6.1.2 Efficiency 6.6.2 Power Awareness 6.6.2.1 Power Consumption Awareness 6.6.2.2 Power Utilization Fairness 6.6.2.3 Overhead of Exchanged Control Messages 6.6.3 Normalized Performance Indices 6.6.3.1 Effectiveness Performance Index 6.6.3.2 Efficiency Performance Index 6.6.3.3 Power Awareness Performance Index 6.6.4 Eight-Metric Performance Comparison 6.7 Discussion and Conclusion Acknowledgment References Chapter 7: Performance Analysis of AODV and DSDV Routing Protocols in Mobile Ad Hoc Network Using OMNeT++ 7.1 Introduction and Related Works 7.2 Manet Routing Protocols 7.2.1 Proactive Routing Protocol 7.2.2 Reactive Routing Protocol 7.2.3 Hybrid Routing Protocol 7.3 Destination-Sequenced Distance-Vector Routing (DSDV) 7.3.1 Mechanism of the DSDV Routing Protocol 7.3.2 Advantages of the DSDV Protocol 7.3.3 Limitations of the DSDV Protocol 7.4 Ad Hoc On-Demand Distance Vector (AODV) 7.4.1 Mechanism of the AODV Routing Protocol 7.4.2 Key Features of AODV 7.4.3 Advantages of the AODV Routing Protocol 7.4.4 Limitations of the AODV Routing Protocol 7.5 Simulation Methodology 7.5.1 Mechanism of OMNeT++ 7.5.2 Simulation Parameters 7.6 Result and Discussion 7.6.1 Performance Metrics 7.6.2 Performance Evaluation 7.6.2.1 Impact of Changing the Number of Nodes 7.6.2.2 Impact of Changing the Speed of Nodes 7.6.2.3 Impact of Changing the Packet Length 7.7 Conclusion and Future Work References Chapter 8: Message Forwarding and Relay Selection Strategies in Mobile Opportunistic Networks 8.1 Introduction 8.2 Message Forwarding/Routing 8.2.1 Background 8.2.2 Classical Routing Protocols 8.2.2.1 Epidemic 8.2.2.2 PRoPHET 8.2.2.3 Spray and Wait 8.2.2.4 Bubble Rap 8.3 Encounter- and Contact-Based Routing 8.3.1 Study on Real-Life Traces 8.3.1.1 Periodicity/Pattern between Node Pairs 8.3.2 Relay Selection 8.3.3 Proposed Routing with Relay Selection 8.3.3.1 Link Definitions on Regular and Sporadic Links 8.3.3.2 RSCR: Scheme Design 8.3.4 Performance Results 8.3.4.1 Simulation Settings 8.3.4.2 Results and Discussion 8.4 Summary and Future Directions References Chapter 9: Routing Techniques for Opportunistic Network 9.1 Introduction 9.2 Classification of Routing Algorithms 9.2.1 Context-Oblivious Approach 9.2.2 Context-Aware Approach 9.3 Factors Affecting Routing Protocol Performance 9.4 QoS Constraints of MONs 9.5 ONE Simulator-Based Performance Evaluation of Routing Algorithms 9.5.1 Case Study: Comparison of Average Latency 9.5.2 Analysis of the Routing Algorithms in View of Open Issues 9.6 Conclusion References Chapter 10: Blockchain Leveraged Node Incentivization in Cooperation-Based Delay Tolerant Networks 10.1 Introduction 10.2 Literature Review 10.3 Rudimentary Elements of Blockchain 10.3.1 Blocks 10.3.2 Transaction 10.3.3 Mining 10.3.4 Ethereum and Smart Contracts 10.4 Integration of Blockchain with DTNs 10.5 System Model 10.5.1 Network Architecture 10.5.2 Security Model 10.6 BlockCent: Blockchain-Based Node Incentivizing Scheme 10.6.1 Setup Phase 10.6.2 Incentivizing Process 10.6.2.1 Transaction Creation 10.6.2.2 Message Transmission 10.6.2.3 Incentive Redemption 10.6.3 Reward Model 10.7 Security Analysis 10.7.1 Shelter Node Refuses to Pay Back 10.7.2 Forwarder Node Refuses to Forward Message 10.7.3 Forwarder Node Refuses to Send ACK 10.7.4 Observer Node Poses as Forwarder Node 10.8 Experimental Results 10.8.1 Simulation Environment 10.8.2 Simulation Setup 10.8.2.1 ONE Setup 10.8.2.2 Ethereum Setup 10.8.3 Simulation Metrics 10.8.3.1 Design Metrics 10.8.3.2 Network Performance Metrics 10.8.3.3 Blockchain Metrics 10.8.4 Results and Discussion 10.8.4.1 Achieving Major Design Goals 10.8.4.2 Evaluation of Network Performance 10.8.4.3 Overheads Introduced for Blockchain Activities 10.9 Conclusion References Chapter 11: Evaluation of Energy Efficiency of Opportunistic Network Routing Protocols 11.1 Introduction and Related Works 11.2 Routing Protocols for OppNet 11.2.1 Replication-Based Protocols 11.2.1.1 Epidemic 11.2.1.2 Spray and Wait 11.2.1.3 Spray and Focus 11.2.2 Probabilistic Protocols 11.2.2.1 PRoPHET 11.2.3 Social-Based Protocols 11.2.3.1 Bubble Rap 11.2.3.2 SCORP 11.2.3.3 dLife 11.2.3.4 dLifeComm 11.3 Simulation Environments 11.3.1 Simulation Tool 11.3.2 Simulation Scenario Settings 11.4 Performance Metrics 11.4.1 Average Remaining Energy 11.4.2 Delivery Ratio 11.4.3 Average Latency 11.4.4 Overhead Ratio 11.5 Results and Discussion 11.5.1 Impact of Node Density 11.5.2 Impact of TTL 11.6 Conclusions Acknowledgments References Chapter 12: Mobility Models in Opportunistic Networks 12.1 Introduction 12.2 Trace-Based Model 12.2.1 Trace-Based Analysis 12.3 Stochastic Mobility Model 12.3.1 Random-Based Mobility Models 12.3.1.1 Random Walk Model 12.3.1.2 Random Direction Model 12.3.1.3 Random Waypoint Model 12.4 Synthetic Models 12.4.1 Temporal Dependency-Based Mobility Models 12.4.2 Spatial Dependency-Based Mobility Models 12.5 Geographical Restriction-Based Mobility Model 12.5.1 Pathway Mobility Model 12.5.2 Obstacle Mobility Model 12.5.3 Manhattan Mobility Model 12.5.4 City Segment Model 12.6 Map-Based Mobility Models 12.6.1 Route-Based Map Mobility Model 12.6.2 Rush Hour (Human) Traffic Model 12.6.3 Working Day Movement Model 12.6.4 Shortest Path Map-Based Movement Model 12.6.5 Social Network-Based Mobility Models 12.6.6 Community-Based Mobility Models 12.6.7 Social Network Models 12.7 Simulation Analysis 12.7.1 Testing Tool 12.7.2 Simulation Results 12.8 Conclusion References Chapter 13: Opportunistic Routing in Mobile Networks 13.1 Introduction 13.1.1 Mobile Ad Hoc Networks (MANETs) 13.1.2 Extremely Opportunistic Routing 13.2 Related Work and Motivation 13.2.1 Recent Work Related to Opportunistic Data Forwarding 13.2.1.1 Protocols Based on Opportunistic Data Forwarding 13.2.1.1.1 Multiple Handshake 13.2.1.1.2 Route-Prioritized Contention 13.2.1.2 Other Variants of Opportunistic Forwarding 13.2.1.2.1 Network Types 13.2.1.2.2 Metrics 13.2.1.2.3 Network Coding-Based Opportunistic Forwarding 13.2.1.2.4 Position-Based Opportunistic Forwarding 13.2.1.3 Scenarios Suitable for Opportunistic Forwarding 13.2.1.4 Performance Modeling for Opportunistic Forwarding 13.2.1.4.1 Performance Optimization 13.2.1.4.2 Modeling from Markov Process and Game Theory 13.2.2 Routing Algorithms Review for Opportunistic Data Forwarding in MANETs 13.2.2.1 Timing Strategy in Routing Protocols 13.2.2.2 Fundamental Algorithms – Link State and Distance Vector 13.2.2.3 Tree-Based Routing Protocols Derived from the Internet 13.2.2.4 Suitability of Existing Routing Protocols for Opportunistic Data Forwarding in MANETs 13.2.3 Motivation and Framework 13.2.3.1 Objectives and Challenges 13.2.3.2 CORMAN Fundamentals 13.3 Proactive Source Routing – PSR 13.3.1 Design of PSR 13.3.1.1 Route Update 13.3.1.2 Neighborhood Trimming 13.3.1.3 Streamlined Differential Update 13.3.2 Implementation 13.3.2.1 Routing and Neighborhood Update Algorithm 13.3.2.2 Algorithms for Transformation of Tree Structures 13.3.2.3 Implementation of Reconstruction in Differential Update 13.4 Large-Scale Routing Update and Small-Scale Retransmission 13.4.1 Large-Scale Live Update 13.4.2 Small-Scale Retransmission 13.4.2.1 Considerations of Small-Scale Retransmission 13.4.2.2 Design of Small-Scale Retransmission 13.4.2.3 Algorithm and Scoring Function 13.5 Performance Evaluation 13.5.1 Performance Study of PSR 13.5.1.1 Experiment Settings 13.5.1.2 TCP with Node Density 13.5.1.3 TCP with Velocity 13.5.1.4 UDP with Density 13.5.1.5 UDP with Velocity 13.5.2 Effectiveness Study of Small-Scale Retransmission 13.5.2.1 Experiment Settings 13.5.2.2 Performance versus Network Dimension 13.5.2.3 Performance versus Velocity 13.5.3 Overall Performance of CORMAN 13.5.3.1 Experiment Settings 13.5.3.2 Performance versus Network Dimension 13.5.3.3 Performance versus Velocity 13.6 Concluding Remarks 13.6.1 Conclusions 13.6.2 Discussion 13.6.2.1 Proactive Source Routing Related 13.6.2.2 About Large-Scale Live Update and Small-Scale Retransmission 13.6.3 Future Work References Chapter 14: Security in Opportunistic Networks 14.1 Introduction 14.2 Characteristics of Opportunistic Networks 14.3 Issues in Opportunistic Networks 14.4 Security Issues in Opportunistic Networks 14.5 Thrust Areas of Security 14.6 Security Architecture for Opportunistic Networks 14.7 Security Attacks and Their Defense Mechanisms 14.8 Conclusion Acknowledgment Notes References Index