ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب OpenCV 4 Computer Vision Application Programming Cookbook: Build complex computer vision applications with OpenCV and C++, 4th Edition

دانلود کتاب OpenCV 4 Computer Vision Application Programming Cookbook: ساخت برنامه های پیچیده بینایی کامپیوتری با OpenCV و C نسخه 4

OpenCV 4 Computer Vision Application Programming Cookbook: Build complex computer vision applications with OpenCV and C++, 4th Edition

مشخصات کتاب

OpenCV 4 Computer Vision Application Programming Cookbook: Build complex computer vision applications with OpenCV and C++, 4th Edition

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781789345285, 1789345286 
ناشر: Packt Publishing Ltd 
سال نشر: 2019 
تعداد صفحات: 494
[479] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 33 Mb 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب OpenCV 4 Computer Vision Application Programming Cookbook: Build complex computer vision applications with OpenCV and C++, 4th Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب OpenCV 4 Computer Vision Application Programming Cookbook: ساخت برنامه های پیچیده بینایی کامپیوتری با OpenCV و C نسخه 4 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب OpenCV 4 Computer Vision Application Programming Cookbook: ساخت برنامه های پیچیده بینایی کامپیوتری با OpenCV و C نسخه 4

دستور العمل های جالبی را برای کمک به درک مفاهیم تشخیص اشیا، پردازش تصویر و تشخیص چهره کشف کنید. قابلیت های یادگیری ماشین توضیحات کتاب OpenCV یک کتابخانه پردازش تصویر و ویدئو است که برای انواع تجزیه و تحلیل تصویر و ویدئو استفاده می شود. در سراسر کتاب، شما با دستور العمل هایی کار خواهید کرد که وظایف مختلفی مانند تشخیص و تشخیص چهره را اجرا می کنند. این کتاب با 70 آموزش مستقل، نقاط درد رایج و بهترین شیوه ها را برای توسعه دهندگان بینایی کامپیوتر (CV) بررسی می کند. هر دستور غذا به یک مشکل خاص می پردازد و یک راه حل اثبات شده و بهترین عمل را با بینش هایی در مورد نحوه کار ارائه می دهد، به طوری که می توانید کد و فایل های پیکربندی را کپی کنید و آنها را مطابق با نیاز خود تغییر دهید. این کتاب با تنظیم OpenCV شروع می شود و نحوه دستکاری پیکسل ها را توضیح می دهد. شما خواهید فهمید که چگونه می توانید تصاویر را با کلاس ها پردازش کنید و پیکسل ها را با هیستوگرام بشمارید. همچنین تشخیص، توصیف و تطبیق نقاط علاقه را خواهید آموخت. با پیشروی در فصل‌ها، با تخمین روابط تصویری در تصاویر، بازسازی صحنه‌های سه‌بعدی، پردازش توالی‌های ویدیویی و ردیابی حرکت بصری آشنا می‌شوید. در فصل های پایانی، مفاهیم یادگیری عمیق مانند تشخیص چهره و اشیا را پوشش خواهید داد. تا پایان کتاب، می‌توانید با اطمینان الگوریتم‌های بینایی بین رایانه‌ای را برای برآوردن نیازهای فنی پروژه‌های CV پیچیده خود پیاده‌سازی کنید. اشیاء معنی دار استفاده از فیلترهای تصویر برای افزایش محتوای تصویر بهره برداری از هندسه تصویر برای انتقال نماهای مختلف از یک صحنه تصویر شده کالیبره کردن دوربین از مشاهدات تصویری مختلف تشخیص افراد و اشیاء در تصاویر با استفاده از تکنیک های یادگیری ماشینی بازسازی صحنه 3 بعدی از تصاویر کاوش تشخیص چهره با استفاده از یادگیری عمیق این کتاب برای چه کسی است اگر شما شما یک توسعه‌دهنده CV یا حرفه‌ای هستید که قبلاً از OpenCV برای ساختن نرم‌افزار بینایی کامپیوتری استفاده می‌کنید یا می‌خواهید از آن استفاده کنید، این کتاب برای شماست. اگر یک برنامه نویس C هستید و به دنبال گسترش مهارت های بینایی کامپیوتر خود با یادگیری OpenCV هستید، این کتاب برای شما مفید خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Discover interesting recipes to help you understand the concepts of object detection, image processing, and facial detection Key FeaturesExplore the latest features and APIs in OpenCV 4 and build computer vision algorithmsDevelop effective, robust, and fail-safe vision for your applicationsBuild computer vision algorithms with machine learning capabilitiesBook Description OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you\'ll work through recipes that implement a variety of tasks, such as facial recognition and detection. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by setting up OpenCV, and explains how to manipulate pixels. You\'ll understand how you can process images with classes and count pixels with histograms. You\'ll also learn detecting, describing, and matching interest points. As you advance through the chapters, you\'ll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you\'ll cover deep learning concepts such as face and object detection. By the end of the book, you\'ll be able to confidently implement a range to computer vision algorithms to meet the technical requirements of your complex CV projects What you will learnInstall and create a program using the OpenCV librarySegment images into homogenous regions and extract meaningful objectsApply image filters to enhance image contentExploit image geometry to relay different views of a pictured sceneCalibrate the camera from different image observationsDetect people and objects in images using machine learning techniquesReconstruct a 3D scene from imagesExplore face detection using deep learningWho this book is for If you’re a CV developer or professional who already uses or would like to use OpenCV for building computer vision software, this book is for you. You’ll also find this book useful if you’re a C++ programmer looking to extend your computer vision skillset by learning OpenCV.



فهرست مطالب

Cover
Title Page
Copyright and Credits
About Packt
Contributors
Table of Contents
Preface
Chapter 1: Playing with Images
	Installing the OpenCV library
		Getting ready
		How to do it...
		How it works...
		There's more...
			Using Qt for OpenCV developments
			The OpenCV developer site
		See also
	Loading, displaying, and saving images
		Getting ready
		How to do it...
		How it works...
		There's more...
			Clicking on images
			Drawing on images
			Running the example with Qt
		See also
	Exploring the cv::Mat data structure
		How to do it...
		How it works...
		There's more...
			The input and output arrays
		See also
	Defining regions of interest
		Getting ready
		How to do it...
		How it works...
		There's more...
			Using image masks
		See also
Chapter 2: Manipulating the Pixels
	Accessing pixel values
		Getting ready
		How to do it...
		How it works...
		There's more...
			The cv::Mat_ template class
		See also
	Scanning an image with pointers
		Getting ready
		How to do it...
		How it works...
		There's more...
			Other color reduction formulas
			Having input and output arguments
			Efficient scanning of continuous images
			Low-level pointer arithmetics
		See also
	Scanning an image with iterators
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Writing efficient image-scanning loops
		How to do it...
		How it works...
		There's more...
		See also
	Scanning an image with neighbor access
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Performing simple image arithmetic
		Getting ready
		How to do it...
		How it works...
		There's more...
			Overloaded image operators
			Splitting the image channels
	Remapping an image
		How to do it...
		How it works...
		See also
Chapter 3: Processing Color Images with Classes
	Comparing colors using the strategy design pattern
		How to do it...
		How it works...
		There's more...
			Computing the distance between two color vectors
			Using OpenCV functions
			The functor or function object
			The OpenCV base class for algorithms
		See also
	Segmenting an image with the GrabCut algorithm
		How to do it...
		How it works...
		See also
	Converting color representations
		Getting ready
		How to do it...
		How it works...
		See also
	Representing colors with hue, saturation, and brightness
		How to do it...
		How it works...
		There's more...
			Using colors for detection – skin tone detection
Chapter 4: Counting the Pixels with Histograms
	Computing the image histogram
		Getting started
		How to do it...
		How it works...
		There's more...
			Computing histograms of color images
		See also
	Applying lookup tables to modify the image's appearance
		How to do it...
		How it works...
		There's more...
			Stretching a histogram to improve the image contrast
			Applying a lookup table on color images
	Equalizing the image histogram
		How to do it...
		How it works...
	Backprojecting a histogram to detect specific image content
		How to do it...
		How it works...
		There's more...
			Backprojecting color histograms
	Using the mean shift algorithm to find an object
		How to do it...
		How it works...
		See also
	Retrieving similar images using histogram comparison
		How to do it...
		How it works...
		See also
	Counting pixels with integral images
		How to do it...
		How it works...
		There's more...
			Adaptive thresholding
			Visual tracking using histograms
		See also
Chapter 5: Transforming Images with Morphological Operations
	Eroding and dilating images using morphological filters
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Opening and closing images using morphological filters
		How to do it...
		How it works...
		See also
	Detecting edges and corners using morphological filters
		Getting ready
		How to do it...
		How it works...
		See also
	Segmenting images using watersheds
		How to do it...
		How it works...
		There's more...
		See also
	Extracting distinctive regions using MSER
		How to do it...
		How it works...
		See also
	Extracting foreground objects with the GrabCut algorithm
		How to do it...
		How it works...
		See also
Chapter 6: Filtering the Images
	Filtering images using low-pass filters
		How to do it...
		How it works...
		See also
	Downsampling an image
		How to do it...
		How it works...
		There's more...
			Interpolating pixel values
		See also
	Filtering images using a median filter
		How to do it...
		How it works...
	Applying directional filters to detect edges
		How to do it...
		How it works...
		There's more...
			Gradient operators
			Gaussian derivatives
		See also
	Computing the Laplacian of an image
		How to do it...
		How it works...
		There's more...
			Enhancing the contrast of an image using the Laplacian
			Difference of Gaussians
		See also
Chapter 7: Extracting Lines, Contours, and Components
	Detecting image contours with the Canny operator
		How to do it...
		How it works...
		See also
	Detecting lines in images with the Hough transform
		Getting ready
		How to do it...
		How it works...
		There's more...
			Detecting circles
		See also
	Fitting a line to a set of points
		How to do it...
		How it works...
		There's more...
	Extracting the components' contours
		How to do it...
		How it works...
		There's more...
	Computing components' shape descriptors
		How to do it...
		How it works...
		There's more...
			Quadrilateral detection
Chapter 8: Detecting Interest Points
	Detecting corners in an image
		How to do it...
		How it works...
		There's more...
			Good features to track
			The feature detector's common interface
		See also
	Detecting features quickly
		How to do it...
		How it works...
		There's more...
			Adapted feature detection
		See also
	Detecting scale-invariant features
		How to do it...
		How it works...
		There's more...
			The SIFT feature-detection algorithm
		See also
	Detecting FAST features at multiple scales
		How to do it...
		How it works...
		There's more...
			The ORB feature-detection algorithm
		See also
Chapter 9: Describing and Matching Interest Points
	Matching local templates
		How to do it...
		How it works...
		There's more...
			Template matching
		See also
	Describing local intensity patterns
		How to do it...
		How it works...
		There's more...
			Cross-checking matches
			The ratio test
			Distance thresholding
		See also
	Describing keypoints with binary features
		How to do it...
		How it works...
		There's more...
			FREAK
		See also
Chapter 10: Estimating Projective Relations in Images
	Computing the fundamental matrix of an image pair
		Getting ready
		How to do it...
		How it works...
		See also
	Matching images using a random sample consensus
		How to do it...
		How it works...
		There's more...
			Refining the fundamental matrix
			Refining the matches
	Computing a homography between two images
		Getting ready
		How to do it...
		How it works...
		There's more...
	Detecting planar targets in an image
		How to do it...
		See also
Chapter 11: Reconstructing 3D Scenes
	Digital image formation
	Calibrating a camera
		Getting ready
		How to do it...
		How it works...
		There's more...
			Calibration with known intrinsic parameters
			Using a grid of circles for calibration
		See also
	Recovering the camera pose
		How to do it...
		How it works...
		There's more...
			cv::Viz – a 3D visualizer module
		See also
	Reconstructing a 3D scene from calibrated cameras
		How to do it...
		How it works...
		There's more...
			Decomposing a homography
			Bundle adjustment
		See also
	Computing depth from a stereo image
		Getting ready
		How to do it...
		How it works...
		See also
Chapter 12: Processing Video Sequences
	Reading video sequences
		How to do it...
		How it works...
		There's more...
		See also
	Processing video frames
		How to do it...
		How it works...
		There's more...
			Processing a sequence of images
			Using a frame processor class
		See also
	Writing video sequences
		How to do it...
		How it works...
		There's more...
			The codec four-character code
		See also
	Extracting the foreground objects in a video
		How to do it...
		How it works...
		There's more...
			The mixture of Gaussian method
		See also
Chapter 13: Tracking Visual Motion
	Tracing feature points in a video
		How to do it...
		How it works...
		See also
	Estimating the optical flow
		Getting ready
		How to do it...
		How it works...
		See also
	Tracking an object in a video
		How to do it...
		How it works...
		See also
Chapter 14: Learning from Examples
	Recognizing faces using the nearest neighbors of local binary patterns
		How to do it...
		How it works...
		See also
	Finding objects and faces with a cascade of Haar features
		Getting ready
		How to do it...
		How it works...
		There's more...
			Face detection with a Haar cascade
		See also
	Detecting objects and people using SVMs and histograms of oriented gradients
		Getting ready
		How to do it...
		How it works...
		There's more...
			HOG visualization
			People detection
			Deep learning and convolutional neural networks (CNNs)
		See also
Chapter 15: OpenCV Advanced Features
	Face detection using deep learning
		How to do it...
		How it works...
		See also
	Object detection with YOLOv3
		How to do it...
		How it works...
		See also
	Enabling Halide to improve efficiency
		How to do it...
		How it works...
		See also
	OpenCV.js introduction
		How to do it...
		How it works...
Other Books You May Enjoy
Index




نظرات کاربران