دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Wim Rouwet
سری:
ISBN (شابک) : 0323919235, 9780323919234
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 404
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Open Radio Access Network (O-RAN) Systems Architecture and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معماری و طراحی سیستم های شبکه دسترسی رادیویی باز (O-RAN). نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
معماری و طراحی سیستمهای شبکه دسترسی رادیویی باز (O-RAN) شروعی جهشی به مهندسان در حال توسعه سیستمهای سختافزار و نرمافزار O-RAN میدهد و رویکردی از بالا به پایین برای طراحی سیستمهای O-RAN ارائه میدهد. قبل از معرفی استانداردهای مربوطه O-RAN و 3GPP، مقدمه ای در مورد اینکه چرا سیستم های بی سیم به شکل امروزی به نظر می رسند، ارائه می دهد. بقیه کتاب جنبه های سخت افزاری و نرم افزاری طراحی سیستم O-RAN، از جمله ابعاد و اهداف عملکرد را مورد بحث قرار می دهد.
Open Radio Access Network (O-RAN) Systems Architecture and Design gives a jump-start to engineers developing O-RAN hardware and software systems, providing a top-down approach to O-RAN systems design. It gives an introduction into why wireless systems look the way they do today before introducing relevant O-RAN and 3GPP standards. The remainder of the book discusses hardware and software aspects of O-RAN system design, including dimensioning and performance targets.
Front Cover Open Radio Access Network (O-RAN) Systems Architecture and Design Copyright Page Contents About the authors Preface Acronyms 1 Open radio access network overview The Open Radio Access Networks Alliance Open Radio Access Networks members Why now? On C-RAN, Open vRAN, OpenRAN, xRAN, and Telecommunications Infrastructure Project Spectrum: enabling 5G Licensed operator spectrum Licensed private spectrum United States Spectrum allocation system and related components Coexistence Europe (example: Germany) Japan Unlicensed spectrum Traditional base station architectures All-in-one base station 3G/4G/5G macro cell 5G base station architectures Integrated small cell Pico/micro cell Distributed antenna systems Massive multiple-input, multiple-output C-(as in: centralized) radio access network Functional splits Distributed versus centralized processing Fronthaul throughput Centralized processing features: Coordinated Multipoint Processing Coordinated Multipoint Open Radio Access Network-supported functional splits Central unit/distributed unit/radio unit Option 7–2x Relevant 3GPP standards nFAPI Other relevant standards Integrated small cell A real-life example: enterprise 5G networking Network installation and maintenance. Who will run the network? Who are the users of the network? What are the applications running on the network and what are derived key performance indicators? Total cost of ownership Use-case example RF aspects Summary and conclusions References Further reading 2 System components, requirements, and interfaces Next-Generation Radio Access Network overview and terminology Wired networking analogy Central unit Control plane user plane split and central unit/distributed unit interface Internet Protocol (IP) and Internet Protocol Security (IPSec) Quality of Service and related concepts Reflective Quality of Service Packet Data Convergence Protocol (PDCP) Dual and multiconnectivity Distributed unit F1 termination Radio Link Control and Medium Access Control Hybrid Automatic Repeat Request Power control Receive side Transmit side Discontinuous transmission and reception Semi-persistent scheduling Bandwidth adaptation/bandwidth part operation Supplementary Uplink operation Physical Layer Channel mapping Radio Network Temporary Identifier Numerology Channel coding (3GPP 38.212) Physical channel mapping and modulation (3GPP 38.211) Radio unit Generalized block diagram Digital beamforming and fast Fourier transform Digital up conversion, channelization, and digital down conversion Peak-to-average power ratio reduction and performance improvement techniques Crest factor reduction Digital predistortion Digital↔analog conversion (digital-to-analog converter/analog-to-digital converter) and analog components Analog gain control Time and frequency synchronization PRACH Distributed unit/radio unit interface, Enhanced Common Public Radio Interface protocol overview Initial access Synchronization Random-access procedure 802.1CM Traffic classes Bridging functions Fronthaul profiles Fronthaul gateway Cell site router/gateway Form factor, environmental and power requirements ASN.1 DiffServ Multiprotocol Label Switching support for DiffServ References 3 Hardware system dimensioning Centralized/distributed unit use-case dimensioning for throughput Traffic requirements based performance analysis User data rate dimensioning Elephant flows Use-case dimensioning for latency Users/transmission time interval eCPRI, fronthaul bandwidth and latency 5G bandwidth examples 4G bandwidth examples Fronthaul latency Distributed unit internal IO Memory dimensioning Memory sizing Life-of-a-packet memory bandwidth analysis HARQ memory and bandwidth dimensioning Transport blocks, code blocks, and HARQ Limited buffer rate matching On code block versus transport block level CRC Transmit operation HARQ process count dimensioning Radio unit Instantaneous bandwidth and occupied bandwidth Receiver chain analysis Radio unit latency and delay Digital predistortion Data converter and phase locked loop (PLL) References Further reading 4 Hardware architecture choices Scalability Development cycle Data center architecture Cell site integrated (CU/DU) solutions Server-based solutions Optimized hardware Radio unit eCPRI termination Low physical layer and digital front end Baseband to radio frequency conversion Digital-to-analog conversion and analog-to-digital conversion Radio frequency subsystem JESD Analog Sub 6GHz front end module Transmit Receive Control mmWave radio frequency module mmWave Link Budget Example Beam switch process steps Integrated small cell Networking processor/host Physical layer/5G modem Radio frequency subsystem Multicore central processing unit selection criteria Single instruction multiple data x86 Arm Performance benchmarking Memory and I/O dimensioning Hardware offload PCIe performance Transaction layer packetization Example calculation References 5 System software Operating system Bare metal/RTOS versus embedded Linux Boot process and application load Long Term Support Roll your own versus commercial grade Realtime and timing Buffer and memory management Hardware acceleration model Bbdev and inter process communication Linux and processor performance tuning Networking stacks Features Security Performance Functional application platform interface PHY API nFAPI Network monitor mode API Security aspects Profiling Network reconnaissance Security updates Application architecture 3GPP and International Electrotechnical Commission security requirements References Further reading 6 User-plane application components GTP Protocol PDCP protocol Robust header compression RLC Protocol MAC protocol eCPRI protocol overview Low physical layer Beamforming and time/frequency domain conversion PRACH extraction and filtering Digital front-end Signal aggregation and digital up conversion Crest factor reduction Digital Predistortion Receive side gain control References Further reading 7 Wireless scheduling and Quality of Service optimization techniques Orthogonal frequency division multiple access Orthogonal frequency division multiple access subcarrier allocation Modulation Base station scheduler algorithms Opportunistic scheduler The Quality of Service scheduler Combined Quality of Service and opportunistic schedulers Multiuser multiple input multiple output Architectural framework for the base station wireless scheduler algorithm Static and regular scheduling Active user selection Primary user selection (time-domain scheduling) Frequency allocation (frequency-domain scheduling) Secondary and remainder user(s) selection: multiple input multiple output scheduling System-level optimization Software optimization techniques Example: arg(max) vectorization References Further reading 8 Synchronization in open radio access networks Understanding frequency, time, syntonization, and synchronization Frequency Time and phase What is time? Syntonized versus synchronized How do we get time? Global navigation by satellite systems O-RAN synchronization Network-based synchronization Physical-layer transport and Synchronous Ethernet Packet time transport and precision time protocol An introduction to PTP Putting PTP and SyncE together Cellular network synchronization requirements Frequency accuracy and stability Time accuracy Synchronization in O-RAN O-RAN network-level synchronization FTS or PTS? SyncE or no SyncE O-RAN sync equipment requirements Sync solution implementation Frequency-only systems Time-synchronization systems Designing a PTP+SyncE solution The effects of timestamping location and resolution Oscillator selection and holdover Unraveling the standards spaghetti Further reading 9 Software performance Packet processing cycle budget analysis Example: Enhanced Common Public Radio Interface complexity analysis Physical Layer complexity analysis Phase 1: theoretical analysis Phase 2: performance proof points Phase 3: stack development Central Processing Unit loading summary System-on-Chip performance counters Life-of-a-packet double data rate utilization analysis Mitigation techniques: what if the product does not meet performance targets? Development environment optimization Software optimization techniques Reference 10 Interoperability and test Development testing Static analysis Functional Performance System test setup Feature testing RF compliance testing Transmitter Receiver Calibration Tools needed Interoperability testing Use-case scenarios User Equipment test pool Plug fest Consumer application hardening Performance testing Black box testing Throughput Latency Stability Cell performance White box testing Front-, mid-, and backhaul testing Operator acceptance testing Regulatory approval testing References 11 Differentiation by use case Ultra-reliable low-latency communication 3GPP standards: ultra-reliable low-latency communication in 5G/NR Orthogonal frequency division multiplexing numerologies Slot/mini-slot structure Uplink grant-free transmission High reliability Interference management Deployment options including edge compute and software-defined networking Vehicle-to-infrastructure (vehicle-to-anything) roadside unit architecture and implementation Introduction Spectral aspects Vehicle-to-anything standards and deployment timeline 802.11p 4G C-V2X (PC5) NR C-V2X (PC5) Standards summary Deployment timeline Roadside unit System architecture 5G Reduced Capabilities (RedCap) Reduced number of Rx/Tx antennas User Equipment bandwidth reduction Half-duplex Frequency Division Duplexing operation Relaxed User Equipment processing time Relaxed maximum number of multiple-input, multiple-output layers Relaxed maximum modulation order Combinations of abovementioned features References Further reading Index Back Cover