ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب One Thousand Exercises in Probability: Third Edition

دانلود کتاب هزار تمرین در احتمال: ویرایش سوم

One Thousand Exercises in Probability: Third Edition

مشخصات کتاب

One Thousand Exercises in Probability: Third Edition

دسته بندی: احتمال
ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 0198847610, 9780198847618 
ناشر: Oxford University Press 
سال نشر: 2020 
تعداد صفحات: 593 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 28,000



کلمات کلیدی مربوط به کتاب هزار تمرین در احتمال: ویرایش سوم: تئوری احتمال، صف ها، مدل های مارکوف، تکالیف



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب One Thousand Exercises in Probability: Third Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هزار تمرین در احتمال: ویرایش سوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب هزار تمرین در احتمال: ویرایش سوم

این نسخه سوم نسخه اصلاح شده، به روز شده و بسیار توسعه یافته نسخه قبلی 2001 است. بیش از 1300 تمرین موجود در داخل صرفاً مسائل تمرینی نیستند، بلکه برای نشان دادن مفاهیم، ​​روشن کردن موضوع، و اطلاع رسانی و سرگرمی انتخاب شده اند. خواننده طیف وسیعی از موضوعات شامل جنبه‌های ابتدایی احتمال و متغیرهای تصادفی، نمونه‌برداری، تولید توابع، زنجیره‌های مارکوف، هم‌گرایی، فرآیندهای ثابت، تجدید، صف‌ها، مارتینگل‌ها، انتشار، فرآیندهای لووی، ثبات و خود شباهت، زمان پوشش داده شده است. تغییرات، و محاسبات تصادفی از جمله قیمت گذاری گزینه از طریق مدل Black-Scholes مالی ریاضی. این متن برای خدمت به دانش آموزان به عنوان همراهی برای دوره های ابتدایی، متوسط ​​و پیشرفته در تحقیقات احتمال، فرآیندهای تصادفی و عملیات در نظر گرفته شده است. همچنین برای هر کسی که نیاز به منبعی برای تعداد زیادی از مشکلات و سوالات در این زمینه ها دارد مفید خواهد بود. به طور خاص، این کتاب به عنوان همراهی برای جلد نویسندگان، احتمالات و فرآیندهای تصادفی، ویرایش چهارم (OUP 2020) عمل می کند.


توضیحاتی درمورد کتاب به خارجی

This third edition is a revised, updated, and greatly expanded version of previous edition of 2001. The 1300+ exercises contained within are not merely drill problems, but have been chosen to illustrate the concepts, illuminate the subject, and both inform and entertain the reader. A broad range of subjects is covered, including elementary aspects of probability and random variables, sampling, generating functions, Markov chains, convergence, stationary processes, renewals, queues, martingales, diffusions, L�vy processes, stability and self-similarity, time changes, and stochastic calculus including option pricing via the Black-Scholes model of mathematical finance. The text is intended to serve students as a companion for elementary, intermediate, and advanced courses in probability, random processes and operations research. It will also be useful for anyone needing a source for large numbers of problems and questions in these fields. In particular, this book acts as a companion to the authors' volume, Probability and Random Processes, fourth edition (OUP 2020).



فهرست مطالب

Cover
One Thousand Exercises in Probability
Copyright
Epigraph
Preface to the Third Edition
Contents
Questions
	1 Events and their probabilities
		1.2 Exercises. Events as sets
		1.3 Exercises. Probability
		1.4 Exercises. Conditional probability
		1.5 Exercises. Independence
		1.7 Exercises. Worked examples
		1.8 Problems
	2 Random variables and their distributions
		2.1 Exercises. Random variables
		2.2 Exercises. The law of averages
		2.3 Exercises. Discrete and continuous variables
		2.4 Exercises. Worked examples
		2.5 Exercises. Random vectors
		2.7 Problems
	3 Discrete random variables
		3.1 Exercises. Probability mass functions
		3.2 Exercises. Independence
		3.3 Exercises. Expectation
		3.4 Exercises. Indicators and matching
		3.5 Exercises. Examples of discrete variables
		3.6 Exercises. Dependence
		3.7 Exercises. Conditional distributions and conditional expectation
		3.8 Exercises. Sums of random variables
		3.9 Exercises. Simple random walk
		3.10 Exercises. Random walk: counting sample paths
		3.11 Problems
	4 Continuous random variables
		4.1 Exercises. Probability density functions
		4.2 Exercises. Independence
		4.3 Exercises. Expectation
		4.4 Exercises. Examples of continuous variables
		4.5 Exercises. Dependence
		4.6 Exercises. Conditional distributions and conditional expectation
		4.7 Exercises. Functions of random variables
		4.8 Exercises. Sums of random variables
		4.9 Exercises. Multivariate normal distribution
		4.10 Exercises. Distributions arising from the normal distribution
		4.11 Exercises. Sampling from a distribution
		4.12 Exercises. Coupling and Poisson approximation
		4.13 Exercises. Geometrical probability
		4.14 Problems
	5 Generating functions and their applications
		5.1 Exercises. Generating functions
		5.2 Exercises. Some applications
		5.3 Exercises. Random walk
		5.4 Exercises. Branching processes
		5.5 Exercises. Age-dependent branching processes
		5.6 Exercises. Expectation revisited
		5.7 Exercises. Characteristic functions
		5.8 Exercises. Examples of characteristic functions
		5.9 Exercises. Inversion and continuity theorems
		5.10 Exercises. Two limit theorems
		5.11 Exercises. Large deviations
		5.12 Problems
	6 Markov chains
		6.1 Exercises. Markov processes
		6.2 Exercises. Classification of states
		6.3 Exercises. Classification of chains
		6.4 Exercises. Stationary distributions and the limit theorem
		6.5 Exercises. Reversibility
		6.6 Exercises. Chains with finitely many states
		6.7 Exercises. Branching processes revisited
		6.8 Exercises. Birth processes and the Poisson process
		6.9 Exercises. Continuous-time Markov chains
		6.10 Exercises. Kolmogorov equations and the limit theorem
		6.11 Exercises. Birth–death processes and imbedding
		6.12 Exercises. Special processes
		6.13 Exercises. Spatial Poisson processes
		6.14 Exercises. Markov chain Monte Carlo
		6.15 Problems
	7 Convergence of random variables
		7.1 Exercises. Introduction
		7.2 Exercises. Modes of convergence
		7.3 Exercises. Some ancillary results
		7.4 Exercise. Laws of large numbers
		7.5 Exercises. The strong law
		7.6 Exercise. The law of the iterated logarithm
		7.7 Exercises. Martingales
		7.8 Exercises. Martingale convergence theorem
		7.9 Exercises. Prediction and conditional expectation
		7.10 Exercises. Uniform integrability
		7.11 Problems
	8 Random processes
		8.2 Exercises. Stationary processes
		8.3 Exercises. Renewal processes
		8.4 Exercises. Queues
		8.5 Exercises. TheWiener process
		8.6 Exercises. L´evy processes and subordinators
		8.7 Exercises. Self-similarity and stability
		8.8 Exercises. Time changes
		8.10 Problems
	9 Stationary processes
		9.1 Exercises. Introduction
		9.2 Exercises. Linear prediction
		9.3 Exercises. Autocovariances and spectra
		9.4 Exercises. Stochastic integration and the spectral representation
		9.5 Exercises. The ergodic theorem
		9.6 Exercises. Gaussian processes
		9.7 Problems
	10 Renewals
		10.1 Exercises. The renewal equation
		10.2 Exercises. Limit theorems
		10.3 Exercises. Excess life
		10.4 Exercises. Applications
		10.5 Exercises. Renewal–reward processes
		10.6 Problems
	11 Queues
		11.2 Exercises. M/M/1
		11.3 Exercises. M/G/1
		11.4 Exercises. G/M/1
		11.5 Exercises. G/G/1
		11.6 Exercise. Heavy traffic
		11.7 Exercises. Networks of queues
		11.8 Problems
	12 Martingales
		12.1 Exercises. Introduction
		12.2 Exercises. Martingale differences and Hoeffding’s inequality
		12.3 Exercises. Crossings and convergence
		12.4 Exercises. Stopping times
		12.5 Exercises. Optional stopping
		12.6 Exercise. The maximal inequality
		12.7 Exercises. Backward martingales and continuous-time martingales
		12.9 Problems
	13 Diffusion processes
		13.2 Exercise. Brownian motion
		13.3 Exercises. Diffusion processes
		13.4 Exercises. First passage times
		13.5 Exercises. Barriers
		13.6 Exercises. Excursions and the Brownian bridge
		13.7 Exercises. Stochastic calculus
		13.8 Exercises. The Itˆo integral
		13.9 Exercises. Itˆo’s formula
		13.10 Exercises. Option pricing
		13.11 Exercises. Passage probabilities and potentials
		13.12 Problems
Solutions
	1 Events and their probabilities
		1.2 Solutions. Events as sets
		1.3 Solutions. Probability
		1.4 Solutions. Conditional probability
		1.5 Solutions. Independence
		1.7 Solutions. Worked examples
		1.8 Solutions to problems
	2 Random variables and their distributions
		2.1 Solutions. Random variables
		2.2 Solutions. The law of averages
		2.3 Solutions. Discrete and continuous variables
		2.4 Solutions. Worked examples
		2.5 Solutions. Random vectors
		2.7 Solutions to problems
	3 Discrete random variables
		3.1 Solutions. Probability mass functions
		3.2 Solutions. Independence
		3.3 Solutions. Expectation
		3.4 Solutions. Indicators and matching
		3.5 Solutions. Examples of discrete variables
		3.6 Solutions. Dependence
		3.7 Solutions. Conditional distributions and conditional expectation
		3.8 Solutions. Sums of random variables
		3.9 Solutions. Simple random walk
		3.10 Solutions. Random walk: counting sample paths
		3.11 Solutions to problems
	4 Continuous random variables
		4.1 Solutions. Probability density functions
		4.2 Solutions. Independence
		4.3 Solutions. Expectation
		4.4 Solutions. Examples of continuous variables
		4.5 Solutions. Dependence
		4.6 Solutions. Conditional distributions and conditional expectation
		4.7 Solutions. Functions of random variables
		4.8 Solutions. Sums of random variables
		4.9 Solutions. Multivariate normal distribution
		4.10 Solutions. Distributions arising from the normal distribution
		4.11 Solutions. Sampling from a distribution
		4.12 Solutions. Coupling and Poisson approximation
		4.13 Solutions. Geometrical probability
		4.14 Solutions to problems
	5 Generating functions and their applications
		5.1 Solutions. Generating functions
		5.2 Solutions. Some applications
		5.3 Solutions. Random walk
		5.4 Solutions. Branching processes
		5.5 Solutions. Age-dependent branching processes
		5.6 Solutions. Expectation revisited
		5.7 Solutions. Characteristic functions
		5.8 Solutions. Examples of characteristic functions
		5.9 Solutions. Inversion and continuity theorems
		5.10 Solutions. Two limit theorems
		5.11 Solutions. Large deviations
		5.12 Solutions to problems
	6 Markov chains
		6.1 Solutions. Markov processes
		6.2 Solutions. Classification of states
		6.3 Solutions. Classification of chains
		6.4 Solutions. Stationary distributions and the limit theorem
		6.5 Solutions. Reversibility
		6.6 Solutions. Chains with finitely many states
		6.7 Solutions. Branching processes revisited
		6.8 Solutions. Birth processes and the Poisson process
		6.9 Solutions. Continuous-time Markov chains
		6.10 Solutions. Kolmogorov equations and the limit theorem
		6.11 Solutions. Birth–death processes and imbedding
		6.12 Solutions. Special processes
		6.13 Solutions. Spatial Poisson processes
		6.14 Solutions. Markov chain Monte Carlo
		6.15 Solutions to problems
	7 Convergence of random variables
		7.1 Solutions. Introduction
		7.2 Solutions. Modes of convergence
		7.3 Solutions. Some ancillary results
		7.4 Solutions. Laws of large numbers
		7.5 Solutions. The strong law
		7.6 Solution. The law of the iterated logarithm
		7.7 Solutions. Martingales
		7.8 Solutions. Martingale convergence theorem
		7.9 Solutions. Prediction and conditional expectation
		7.10 Solutions. Uniform integrability
		7.11 Solutions to problems
	8 Random processes
		8.2 Solutions. Stationary processes
		8.3 Solutions. Renewal processes
		8.4 Solutions. Queues
		8.5 Solutions. TheWiener process
		8.6 Solutions. L´evy processes and subordinators
		8.7 Solutions. Self-similarity and stability
		8.8 Solutions. Time changes
		8.10 Solutions to problems
	9 Stationary processes
		9.1 Solutions. Introduction
		9.2 Solutions. Linear prediction
		9.3 Solutions. Autocovariances and spectra
		9.4 Solutions. Stochastic integration and the spectral representation
		9.5 Solutions. The ergodic theorem
		9.6 Solutions. Gaussian processes
		9.7 Solutions to problems
	10 Renewals
		10.1 Solutions. The renewal equation
		10.2 Solutions. Limit theorems
		10.3 Solutions. Excess life
		10.4 Solutions. Applications
		10.5 Solutions. Renewal–reward processes
		10.6 Solutions to problems
	11 Queues
		11.2 Solutions. M/M/1
		11.3 Solutions. M/G/1
		11.4 Solutions. G/M/1
		11.5 Solutions. G/G/1
		11.6 Solution. Heavy traffic
		11.7 Solutions. Networks of queues
		11.8 Solutions to problems
	12 Martingales
		12.1 Solutions. Introduction
		12.2 Solutions. Martingale differences and Hoeffding’s inequality
		12.3 Solutions. Crossings and convergence
		12.4 Solutions. Stopping times
		12.5 Solutions. Optional stopping
		12.6 Solution. The maximal inequality
		12.7 Solutions. Backward martingales and continuous-time martingales
		12.9 Solutions to problems
	13 Diffusion processes
		13.2 Solution. Brownian motion
		13.3 Solutions. Diffusion processes
		13.4 Solutions. First passage times
		13.5 Solutions. Barriers
		13.6 Solutions. Excursions and the Brownian bridge
		13.7 Solutions. Stochastic calculus
		13.8 Solutions. The Itˆo integral
		13.9 Solutions. Itˆo’s formula
		13.10 Solutions. Option pricing
		13.11 Solutions. Passage probabilities and potentials
		13.12 Solutions to problems
Bibliography
Index




نظرات کاربران