دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوتکنولوژی ویرایش: 1 نویسندگان: Debmalya Barh, Vasco Azevedo سری: ISBN (شابک) : 0128158700, 9780128158708 ناشر: Academic Press سال نشر: 2018 تعداد صفحات: 406 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Omics Technologies and Bio-engineering: Volume 2: Towards Improving Quality of Life به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Omics Technologies and Bio-engineering: جلد 2: به سوی بهبود کیفیت زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Dedication Dedication List of contributors List of Contributors About the editors About the Editors Contents 1-5 Contents 5-10 Contents 11-15 Contents 16-20 Chapter 01 1 Microbial Omics: Applications in Biotechnology 1.1 Introduction 1.2 Structural Genomics 1.2.1 Comparative and Pan-Genomics 1.2.2 Immunogenomics 1.2.3 Post-Genomics 1.3 Functional Genomics 1.3.1 Transcriptomics 1.3.2 Proteomics (Interactomics) 1.3.3 Metabolomics 1.4 Conclusions and Perspectives References Chapter 02 2 Omics Approaches in Viral Biotechnology: Toward Understanding the Viral Diseases, Prevention, Therapy, and Other Applicat... 2.1 Introduction 2.2 The History of Identification of Viruses at a Molecular Level and Metagenomics 2.3 Advancements in Techniques to Study Virus–Host Interactions 2.3.1 Hybridization 2.3.1.1 Microarray Techniques 2.3.1.2 Subtractive Hybridization 2.3.2 Methods Based on PCR 2.3.2.1 Degenerate PCR 2.3.2.2 Random PCR 2.3.3 Metatranscriptomics Analysis 2.3.3.1 Metagenomics Joined With Metatranscriptomic Analyses 2.3.4 Viral Screening for Development of Therapeutics 2.3.5 Therapy 2.3.5.1 Omics Approach for Elucidating Host and Virus Interaction 2.4 Applications 2.4.1 Cell-Based Screenings 2.4.2 Gain-of-Function Method 2.4.3 Loss-of-Function Method 2.4.4 Comparative Genome Profiling References Further Reading Chapter 03 3 Algal Biotechnology: An Update From Industrial and Medical Point of View 3.1 Microalgae—An Introduction 3.1.1 Biological Importance of Microalgae 3.1.1.1 Foods 3.1.1.2 Feed 3.1.1.3 Fatty Acids 3.1.1.4 Cosmetics 3.1.1.5 Biofertilizers 3.1.1.6 Anticancer Activity 3.1.1.7 Antiviral 3.1.1.8 Antibacterial 3.1.1.9 Antifungal 3.1.1.10 Biofuel 3.1.1.11 CO2 Sequestration 3.1.1.12 Wastewater Treatment 3.1.1.13 Bioremediation/Phycoremediation 3.2 Seaweeds (Macroalgae)—An Introduction 3.2.1 Seaweed Phycocolloids 3.2.2 Phycocolloids of Red Seaweeds 3.2.2.1 Agar and Its Structure 3.2.2.1.1 Carrageenan 3.2.2.2 Polysaccharides of Brown Seaweeds 3.2.2.2.1 Alginate 3.2.2.2.2 Laminarin 3.2.2.2.3 Fucoidan 3.2.2.3 Polysaccharides of Green Seaweeds 3.2.2.3.1 Ulvan 3.2.2.3.2 Food 3.2.2.4 Prebiotic Potential of Polysaccharides Present in Seaweeds 3.2.2.5 Mechanism of Action of Prebiotics 3.2.2.6 Nutraceuticals 3.2.2.7 Cosmetics and Cosmeceuticals 3.2.2.8 Pharmaceuticals 3.2.2.9 Seaweeds as Biological Control Against Animal and Plant Pathogens 3.2.2.10 Bioremediation 3.2.2.11 Pigment Extraction and Production 3.2.2.12 Seaweeds Tissue Culture 3.2.2.13 Drug Delivery 3.2.2.14 Bioenergy 3.2.2.15 Biofuel 3.2.2.16 Biomineralization 3.2.2.17 Bionanocrystallization 3.3 Conclusion References Further Reading Chapter 04 4 Omics Approaches in Fungal Biotechnology: Industrial and Medical Point of View 4.1 Introduction 4.2 Insights Into Fungal Genomics 4.3 Insights Into Fungal Transcriptomics 4.4 Insights Into Fungal Proteomics 4.5 Insights Into Fungal Metabolomics 4.6 Bioinformatics 4.7 Sample Preparation Challenges 4.8 Fungal Omics—A Medical Perspective 4.8.1 Role of Fungi on Immunocompromised Patients 4.8.2 Fungi and the Gut Microflora 4.9 Fungal Omics—An Industrial Perspective 4.10 Conclusion References Further Reading Chapter 05 5 Genetic Engineering for Plant Transgenesis: Focus to Pharmaceuticals 5.1 Introduction 5.2 Plants as Bioreactors 5.2.1 Recombinant Protein Production From Plants 5.2.1.1 Plants for Open-Field and Greenhouse Production of Pharmaceuticals 5.2.1.2 Plant-Based Expression Systems 5.2.1.3 Bioreactor-Based Plant Systems 5.2.1.4 Increasing Heterologous Protein Accumulation in Plants 5.2.1.5 Purification of Recombinant Proteins From Plants 5.3 Plant-Made Pharmaceuticals 5.3.1 Plantibodies 5.3.2 Edible Vaccines 5.3.3 PMPs: Commercial Status 5.4 Chloroplast Genome Engineering for Pharmaceuticals 5.5 Future Directions References Chapter 06 6 Agricultural Biotechnology: Engineering Plants for Improved Productivity and Quality 6.1 Introduction of Agricultural Biotechnology 6.1.1 Origin and Definition of Agricultural Biotechnology 6.1.2 Plant Breeding Program 6.1.2.1 Conventional Plant Breeding 6.1.2.2 Modern Plant Breeding 6.1.3 Application of Modern Agriculture 6.1.3.1 Yield Increase 6.1.3.2 Enhancement of Compositional Traits 6.1.3.3 Crop Adaptation 6.2 Genetic Engineering Strategies for Crop Improvement 6.2.1 Introduction of Plant Genetic Modification 6.2.2 Plant Transformation Techniques 6.2.2.1 Physicochemical Methods 6.2.2.2 Biological Methods 6.2.2.2.1 Agrobacterium-Mediated Plant Transformation 6.2.2.2.2 Virus-Mediated Plant Transformation 6.2.2.2.3 In Planta Transformation 6.3 Applications of Genetically Modified Crops 6.3.1 Resistance to Biotic Stress 6.3.1.1 Insect Resistance 6.3.1.1.1 Resistance Gene From Microorganisms 6.3.1.1.2 Resistance Genes From Higher Plants and Animals 6.3.1.2 Disease Resistance 6.3.1.3 Virus Resistance 6.3.2 Resistance to Abiotic Stresses 6.3.2.1 Herbicide Resistance 6.3.2.2 Tolerance to Water-Deficit Stresses 6.4 Genetic Manipulation for Crop Quality 6.4.1 Transgenic for Improved Fruit Storage 6.4.2 Golden Rice 6.4.3 Eco-Social Impact of Genetically Modified Crops 6.4.4 Current Status of GM Plants 6.4.5 Goals of Genetic Engineering in Crop Improvement 6.4.6 Concerns About Transgenic Plants 6.5 Genetic Assisted Plant Breeding 6.5.1 Introduction to Molecular Markers 6.5.1.1 Prerequisites and General Activities of MAB 6.5.2 Variety Identification and Seed Purity Analysis 6.5.2.1 Genetic Distance Analysis 6.5.3 MABC Breeding 6.5.3.1 Nearly Isogenic Strategies 6.5.4 Molecular Markers for Hybrid Vigor 6.6 Future Prospects References Chapter 07 7 Functional Food Biotechnology: The Use of Native and Genetically Engineered Lactic Acid Bacteria 7.1 Introduction 7.2 Definitions 7.3 Lactic Acid Bacteria 7.4 Nutraceutical Production by LAB 7.4.1 Vitamins 7.4.2 Bioactive Peptides 7.4.3 Exopolysaccharides 7.4.4 Antioxidant Enzymes 7.4.5 Other Beneficial Enzymes 7.5 Probiotic Effects of LAB 7.5.1 Probiotics in Intestinal Inflammation 7.5.1.1 Probiotics and Their Effects on Host’s Immunity and the Prevention of Infections 7.5.1.2 Probiotics for Obese Hosts 7.5.1.3 Probiotics and Reduction of Cardiovascular Risk 7.5.1.4 Probiotics in Cancer Prevention 7.5.1.5 Probiotics in Healthy Host 7.6 Concluding Remarks References Chapter 08 8 Omics and Edible Vaccines 8.1 Introduction: An Overview of Edible Vaccines 8.1.1 Production of Edible Vaccines Using Genomics 8.1.2 Production of Edible Vaccines Using Transcriptomics 8.1.3 Production of Edible Vaccines Using Proteomics 8.1.4 Production of Edible Vaccines Using Metabolomics 8.2 Edible Vaccines 8.2.1 Plasmid/Vector Mediated 8.2.2 Gene Gun or Biolistic Method 8.2.3 Electroporation/Electrotransfection 8.2.4 Lipofection 8.3 Mode of Action of Edible Vaccines 8.4 Conventional Vaccines Versus Edible Vaccines 8.5 Disadvantages of Edible Vaccines 8.6 Applications of Edible Vaccines 8.6.1 Autoimmune Diseases 8.6.2 Gastrointestinal Disorders 8.6.3 Malaria 8.6.4 Measles 8.6.5 Hepatitis B 8.7 Clinical Trials and Research Studies 8.8 Second-Generation Edible Vaccines 8.9 Current Developments 8.9.1 Banana, Tomato, and Potato 8.10 Patents on Edible Vaccines 8.11 Future Prospects References Further Reading Chapter 09 9 Plant Metabolic Engineering 9.1 Introduction 9.1.1 Metabolites 9.1.1.1 Types of Metabolites 9.1.1.2 Importance of Secondary Metabolites 9.2 Metabolic Engineering—A Tool for Creating Desired Diversity 9.3 Approaches and Strategies 9.3.1 Systems for Metabolic Engineering 9.3.1.1 Plant Systems 9.3.1.2 In vitro Cultures 9.3.1.3 Microbial Cells 9.3.2 Management and Modulation of Metabolic Flux 9.3.2.1 Identification of Key Genes 9.3.2.2 Redirecting Flux by Overexpression and Silencing of Genes 9.3.2.3 Diverting Whole Pathway Flux by Regulation of Transcription Factors 9.3.2.4 Diverting Whole Pathway Flux by Using Cis-regulatory Elements 9.3.3 Systems Biology in Plant Metabolic Engineering 9.3.3.1 Strategies of Systems Biology 9.3.3.2 Integration of High-Throughput Omics Experiments 9.3.3.2.1 Genome Based Analysis 9.3.3.2.2 Transcriptome Based Analysis 9.3.3.2.3 Proteome Based Analysis 9.3.3.2.4 Metabolome Based Analysis 9.3.3.3 In silico Modeling and Simulation of Plant Metabolism 9.3.3.3.1 Kinetic Model-Based Analysis 9.3.3.3.2 Flux Model-Based Analysis 9.3.3.3.3 Genome-Scale Model-Based Analysis 9.3.3.4 Tools and Databases for In silico Modeling and Simulation 9.3.3.4.1 Integrated Metabolic Database System 9.3.3.4.2 Integrated Metabolic Networks 9.4 Applications of Metabolic Engineering 9.4.1 In Industry 9.4.2 In Food and Neutraceuticals 9.4.3 In Pharmacy and Medicine 9.4.4 In Agriculture 9.5 Current Status and Limitations 9.6 Future Aspects of Metabolic Engineering 9.7 Conclusions References Chapter 10 10 Biocontrol Technology: Eco-Friendly Approaches for Sustainable Agriculture 10.1 Biopesticides Versus Chemical Pesticide: Face to Face 10.2 Biocontrol: Therapy in Organic Farming 10.3 Mechanisms Employed by Biocontrol Agents for Plant Disease Management 10.3.1 Antibiosis 10.3.2 Mycoparasitism 10.3.3 Competition 10.3.4 Induced Resistance in Host Plants 10.4 Strain Improvement of Biocontrol Agents 10.4.1 Mutagenesis 10.4.2 Protoplast Fusion 10.4.3 Transformation 10.5 Omics in Biocontrol Technology 10.5.1 Genomics 10.5.2 Proteomics 10.5.3 Metabolomics 10.5.4 Secretomics 10.6 Conclusion and Future Prospects 10.7 Summary References Further Reading Chapter 11 11 Bioengineering Towards Fighting Against Superbugs 11.1 Introduction 11.1.1 Global Perspective of Microbial Drug Resistance 11.1.2 Human Actions Contributing Towards MDR Development 11.2 Molecular Basis of Resistance 11.2.1 Acquired Resistance 11.2.1.1 Biochemical Inactivation of Drugs 11.3 Industrially Important Drug-Resistant Pathogens 11.3.1 MDR in Tuberculosis 11.3.1.1 Group 1 11.3.1.2 Group 2 (Streptomycin/Capreomycin) 11.3.1.3 Group 3 (FQ) 11.3.1.4 Group 4 (Ethionamide/Prothionamide, and Thiomides) 11.3.1.5 Group 5 (Linezolid and Clofazimine) 11.4 MDR in Pseudomonas aeruginosa 11.5 Drug Resistance in Candida albicans 11.6 MDR in Malaria 11.7 MDR in Herpes Simplex Virus (HSV) 11.8 Strategies to Control AMR 11.8.1 Infection Prevention and Control at Personal and Community Level 11.8.2 Policy, Cost, and Surveillance of MDR Pathogens: Political Commitment 11.8.3 Fostering Innovations 11.9 Biotechnological Interventions to Counter MDR 11.9.1 Nano-Silver: Antimicrobial Agents 11.9.2 Zinc Oxide Nanoparticles as Synergic Antimicrobials 11.10 The Antibacterial Mechanism of Nanoparticles 11.11 Conclusion and Future Perspectives References Chapter 12 12 Nanotechnology in Bioengineering: Transmogrifying Plant Biotechnology 12.1 Introduction 12.1.1 What is Plant/Crop Bioengineering? 12.2 Where Nanotechnology Can Help in PB? 12.2.1 Nanocides: NMs as Explant Sterilants in Plant Tissue Culture 12.2.2 Nanovehicles: NMs as Gene/Protein Delivery Vehicles 12.2.2.1 Plant Gene Transformation: What Are the Techniques? 12.2.2.2 Nano-enabled Plant Gene Transformation 12.2.2.3 Nano-enabled Vectorless or Direct Physical Methods 12.2.2.3.1 NM-enabled Transformation 12.2.2.3.2 Nanobiolistics or Nanoprojectile-based Gene Gun Technique 12.2.2.4 Other Nano-enabled Direct Techniques 12.2.2.5 Nano-enabled Chemical Techniques 12.2.2.6 Nano-enabled Vector-mediated or Indirect Gene Transformation Techniques 12.2.3 Nanosequencing: Nanopore-based Gene or Protein Sequencing Tools/Techniques 12.2.4 Nanobioimaging: NMs for High-Resolution Real-Time Imaging 12.2.5 Nanotheranostics: Nano-based Therapy and Diagnostic Products for Plant Pests and Pathogens 12.2.6 Nanobarcoding: Naming and Sorting the GM Crops 12.2.7 Nanogrowth Enhancers: NMs to Enhance Seed Germination and Plant Growth 12.2.8 Bioinspired/Nano-enabled Plants 12.3 Conclusions References Further Reading Chapter 13 13 Techniques in Biotechnology: Essential for Industry 13.1 Brief History of Biotechnology 13.2 Fermentation 13.2.1 Fermentation Method 13.2.2 Inoculum (Microorganisms) 13.2.3 Substrate 13.2.4 Fermentors 13.2.5 Culture Conditions 13.2.6 Product 13.3 Biocatalysts/Enzymes 13.4 Industrial Production of Biocatalysts/Enzymes 13.4.1 Enzyme Definition 13.4.2 Enzyme Production Methods 13.4.3 Purification of Enzyme 13.4.4 Advances in Enzyme Industry 13.4.5 Application of Enzyme 13.5 Paper and Pulp Industry 13.6 Biofuels 13.7 Environmental Biotechnology 13.7.1 Application 13.8 Food Process Technology 13.8.1 Advances and Applications 13.9 Biorefinery 13.9.1 Applications 13.10 Bioreactors 13.11 Future Techniques 13.11.1 CRISPR/Cas9 13.11.2 Microbiome and Personalized Medicine 13.11.3 Sequencing 13.11.4 Mass Spectrometry References Further Reading Chapter 14 14 Omics Approaches in Industrial Biotechnology and Bioprocess Engineering 14.1 Introduction 14.2 The Omics Revolution: Implications for Industrial Biotechnology 14.3 Omics Tools in Industrial Biotechnology and Bioprocess Engineering 14.3.1 Next-Generation Sequencing 14.3.2 Mutagenesis 14.3.3 Reverse Genetics 14.3.4 Cell Line Development 14.3.5 Synthetic Biology 14.3.6 Data Depository and Bioinformatics Tools 14.4 Combined Omics Approaches 14.5 Challenges in Omics-for-Industry 14.6 Conclusion and Future Perspectives References Chapter 15 15 Omics Approaches and Applications in Dairy and Food Processing Technology 15.1 Introduction 15.1.1 Historical Perspective 15.1.2 Biotechnological Developments in Dairy and Food Processing 15.1.2.1 Cheese 15.1.2.1.1 Microbial Rennet and Recombinant Chymosin 15.1.3 Bio Yogurt 15.2 Omics: From Farm to Fork 15.3 Proteomics: General Strategies and Analytical Methods 15.3.1 Protein Extraction 15.3.2 Protein Separation 15.3.2.1 Gel-Based Proteomic Approach 15.3.2.2 Gel-Free Proteomic Approach 15.3.3 Protein Identification 15.3.3.1 Mass Spectrometry 15.3.3.1.1 Ionization Techniques 15.3.3.2 Mass Analyzers 15.3.4 Comprehensive Data Analysis 15.4 Proteomics of Milk and Milk Products 15.4.1 Proteomics of Milk Proteins 15.5 Proteomics of Food Technology 15.5.1 Postharvest Processing 15.5.2 Cereal and Other Crops 15.6 Proteomics in Assessing 15.6.1 Quality of Foods 15.7 Transcriptomics in Food Safety 15.8 Future Prospects 15.8.1 Transcriptomics, Proteomics, and Metabolomics 15.8.2 Integrating Omics 15.9 Challenges and Opportunities in Food Omics 15.10 Conclusion References Chapter 16 16 Omics Approaches in Enzyme Discovery and Engineering 16.1 Introduction 16.2 Novel Enzymes Discovery for Industrial Applications 16.3 Molecular Engineering of Available Industrial Enzymes 16.4 Industrial Applications of Enzymes and Examples of Bioengineered Enzymes Currently in Common Use 16.4.1 Enzymes in the Food Industry 16.4.2 Enzymes in the Animal Feed Industry 16.4.3 Corn and Cellulose Processing 16.4.4 Enzymes in Surfactants and Detergents 16.4.5 Enzymes in Organic Bio-Synthesis 16.4.6 Other Promising Applications for Enzymes Within the Textile and Carbon Capture Industries 16.5 Conclusion and Future Perspectives References Chapter 17 17 Biomedical Engineering: The Recent Trends 17.1 Introduction 17.2 Areas of BME 17.2.1 Bioinstrumentation 17.2.2 Biomechanics 17.2.2.1 Sports Biomechanics 17.2.2.2 Continuum Mechanics 17.2.3 Biotribology 17.2.4 Computational Biomechanics 17.2.5 Biofluid Mechanics 17.2.6 Biomaterials 17.2.7 Tissue Engineering 17.2.8 Biorobotic 17.2.9 Biosensors 17.2.10 Neuroengineering 17.3 Future Directions References Further Reading Chapter 18 18 Omics Approaches in Biofuel Technologies: Toward Cost Effective, Eco-Friendly, and Renewable Energy 18.1 Introduction 18.2 Brief Overview of the First-Generation Biofuel Technologies 18.3 Second-Generation Biofuel Technologies 18.4 Third-Generation Biofuel Technologies 18.4.1 Microalgae Cultivation 18.4.2 Microalgae Biomass Harvesting 18.4.3 Lipid Extraction and Biodiesel Production 18.5 Practical Challenges Ahead in Biofuel Technologies 18.6 Omics Advancement and Approaches for Cost-Effective Production of Renewable Energy 18.7 Conclusion and Future Perspectives References Further Reading Chapter 19 19 Omics-Based Bioengineering in Environmental Biotechnology 19.1 Introduction 19.2 Application of Omics in Soil Microbial Ecology 19.2.1 Metagenomics and Soil Function 19.2.2 Metatranscriptomics and Soil Function 19.2.3 Extracting Value From Metatranscriptomics 19.2.4 Niche Specialization and Differentiation 19.3 Application of Omics in Controlling Pollution 19.4 Application of Omics-Based Bioengineering for Chemical Toxicity Screening 19.5 Omics Applications in Environmental Stress-Related Gene and Protein Modifications 19.6 Conclusion and Future Perspective References Further Reading Chapter 20 20 Biochar for Carbon Sequestration: Bioengineering for Sustainable Environment 20.1 Introduction 20.1.1 What Is Environmental Sustainability? 20.1.2 Why There Are Increasing Concerns? 20.1.3 How to Address ES-Related Issues? 20.2 What Is Biochar? 20.2.1 What Are Its Types? 20.2.2 How Biochar Can be Produced? 20.2.3 Why Biochar Can be a Possible Solution for ES? 20.3 Biochar-Based Bioengineering Technologies 20.3.1 Biochar and Various Use Efficiency Strategies 20.3.1.1 Biochar as Nutrient Delivery Vehicle 20.3.1.2 Biochar Amendments Affecting Soil Nutrient Status and Enhancing Nutrient Use Efficiency 20.3.1.3 Biochar for Enhancing Water Use Efficiency 20.3.2 Biochar and Climate Change Abatement: Curbing Greenhouse Gas Emissions 20.3.3 Biochar-Based Bioengineering of Ecological Niches 20.3.3.1 Heavy Metal Removal 20.3.3.2 Organic Pollutant Removal 20.3.3.3 Sorption of Excess N or P From Wastewater 20.3.4 Biochar–Soil Microbial Community Interactions: Possible Implications 20.4 Agronomic Effects of Biochar Amendments in Vegetables 20.4.1 Biochar-Plant Growth Effects and Yield Impacts 20.5 Conclusion References Further Reading Index Index