دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vladimir L. Trofimov, Fanil F. Khaziev, Alisa V. Trofimova سری: ISBN (شابک) : 3030843882, 9783030843885 ناشر: Springer سال نشر: 2022 تعداد صفحات: 442 [434] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب Oil and Gas Reservoir Prospecting and Exploration: High-Resolution Seismic (HRS) techniques and technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اکتشاف و اکتشاف مخزن نفت و گاز: تکنیک ها و فناوری لرزه نگاری با وضوح بالا (HRS) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب موضوعات موضوعی تفسیر دادههای لرزهای دقیق را با استفاده از تکنیکهای لرزهای با وضوح بالا (HRS) مورد بحث قرار میدهد که بر اساس روش عددی توسعهیافته توسط نویسندگان برای حل مشکل لرزهای دینامیکی معکوس (IDSP) است. نویسندگان طیف وسیعی از مسائل مربوط به توسعه و کاربرد فنآوریهای HRS-Geo را بر روی انواع دادههای لرزهای برجسته میکنند و مقدار قابل توجهی از مواد عملی را در شرایط مختلف لرزهای و زمینشناسی تجزیه و تحلیل میکنند. این تجزیه و تحلیل امکان برآورد دقیق شاخص های زمین شناسی در رسوبات را فراهم می کند که برای پیش بینی و اکتشاف ذخایر نفت و گاز از جمله ترکیب سنگ شناسی، خواص مخزن و ماهیت و درجه اشباع سنگ مخزن با سیالات مهم هستند. این کتاب برای متخصصان درگیر در پردازش داده های لرزه ای و تفسیر زمین شناسی، دانشجویان رشته های ژئوفیزیک و زمین شناسی، دانشجویان تحصیلات تکمیلی این تخصص ها در نظر گرفته شده است.
This book discusses topical issues of detailed seismic data interpretation using high-resolution seismic (HRS) techniques, which are based on the numerical method developed by the authors for solving the inverse dynamic seismic problem (IDSP). The authors highlight the range of issues related to the development and application of HRS-Geo technologies on a variety of seismic data, and analyze a significant amount of practical material in various seismic and geological conditions. This analysis allows for the accurate estimation of geological indicators in sediments that are most important for the prediction and exploration of oil and gas deposits, including lithological composition, reservoir properties, and the nature and degree of reservoir rock saturation with fluids. The book is intended for professionals involved in seismic data processing and geological interpretation, students of geophysical and geological specialties, graduate students of these specializations.
Preface Foreword Introduction Contents Chapter 1: Research Direction: Brief Outline of Environmental Geological Indicators Using Reflected Wave Dynamic and Kinematic... 1.1 The Main Research Areas 1.2 The Book Content Overview 1.3 Summary References Chapter 2: Seismic Modeling of Wave Field Dynamic Parameters 2.1 Reflected Wave Dynamic Characteristics Considering the Contribution of Elementary Boundaries and Strata 2.1.1 Interference Contributions Matrix 2.1.2 Contribution of Boundaries and Layers to the Results of Pseudo-Acoustic Transformations 2.1.3 The Contribution of Boundaries and Layers to Instantaneous Dynamic Parameters 2.1.4 The Contribution of Boundaries and Strata to the Seismic Recording Deconvolution Results 2.2 Quantitative Assessment of the Geological Section Parameter Contribution 2.2.1 Lithological Component Contribution 2.2.2 Porosity Contribution 2.2.3 Water Saturation Contribution 2.2.4 Oil Saturation Contribution 2.3 Summary References Chapter 3: Methods for Solving Inverse Dynamic Seismic Problems 3.1 A Brief Review of Seismic Data Interpretation Mathematical Problems. 3.2 Inversion Technologies to Refine the Seismic-Geological Model 3.2.1 Acoustic Deterministic Inversion 3.2.2 Synchronous (Elastic) AVO/AVA Inversion 3.2.3 Geostatistical Inversion Technology 3.2.4 Neural Networks in the Dynamic Interpretation of Seismic Data 3.2.5 The Classification of Seismic Facies is One of the Important Seismic Data Interpretation Directions 3.3 Hydrocarbons Indication in the Dynamic Analysis of Seismic Data 3.3.1 Velocity Determination 3.3.2 Porosity Determination 3.3.3 Terrigenous Rock Density Determination 3.3.4 Reflection Coefficient Ratio Determination 3.3.5 Fluid Nature Determination 3.4 Summary References Chapter 4: Inverse Dynamic Seismic Problem Solution in the HRS-Geo Technology 4.1 Physical Basis for Finding the Properties of a Real Medium and Searching the Optimal Solution to the Inverse Problem 4.1.1 Optimization Method for Solving the Inverse Problem in the HRS-Geo Technology 4.1.2 The General Scheme for Solving an Inverse Dynamic Problem and Interpreting Results in the HRS-Geo Technology 4.2 Examples of Solving the Inverse Dynamic Problem on Test and Real Data 4.2.1 Model Study of the Trace Inversion Algorithm 4.2.2 Application of the Inversion Algorithm for the Real Seismic Data 4.2.3 Version 1: Special Processing Using HRS-Geo Technology 4.2.4 Version 2: Gdata 4.2.5 Version 3: JDow 4.2.6 Version 4: KMGph 4.2.7 Version 5: MU 4.2.8 Version 6: Prdgm 4.2.9 Version 7: PtrAlnce 4.2.10 Version 8: SvMGph 4.2.11 Version 9: SbNGph 4.2.12 Version 10: Svginf 4.2.13 Version 11: TNGph 4.2.14 Version 12: YtGph 4.3 Seismic Data Processing Using HRS-Geo Technology 4.3.1 Useful Signals and Noises in Seismic Exploration, Noise Classification, and Suppression (Attenuation) of Signal Distorti... 4.3.2 Noise Suppression (Attenuation) 4.3.3 Seismic Data Processing Using a Special Graph 4.4 Summary References Chapter 5: Processing and Automated Interpretation of Well Logging Data 5.1 Physical and Geological Rationale for the Study of Sections According to Well Data 5.1.1 Lithological Composition Determination 5.1.2 Porosity Determination 5.1.3 Oil and Gas Saturation Determination 5.1.4 Evaluation of the Reservoir Filtration Properties 5.1.5 Classification of Pre-Jurassic Basement Sediments 5.1.6 Assessment of the Productive Sediment Saturation Nature by Wells of the Studied Areas 5.2 Velocity and Elastic-Deformation Characteristic Determination from VSP Data Study of the Physical Property Spatial Distrib... 5.3 Study of Geological and Geophysical Processes Taking Place in Time 5.4 Summary References Chapter 6: Elastic Wave Velocity and Velocity Gradient Fields for Heterogeneous Geological Media 6.1 Summary References Chapter 7: Determination of Dependencies between Geological and Geophysical Characteristics of the Real Subsurface Environment 7.1 Multidimensional Dependence Determination Between Seismic and Well Field Geophysical Characteristics of the Section 7.2 Petrophysical Equation System in the High-Resolution Seismic Method 7.3 Summary References Chapter 8: Detailed Interpretation of High-Resolution Seismic Data in the Volga-Ural Province 8.1 Complex Reservoir of the Pashiisk and Kynovian Horizons Study (Tatarstan). 8.1.1 Automated Processing and Interpretation of GBS Materials 8.1.2 Geological Structure Prediction Along Reference Profiles 8.1.3 Predicted Geological Indicators Based on HRS, GBS, and Area Drilling Data 8.1.4 Oil-Saturated Object Distribution in the Research Area 8.1.5 Evaluation of the HRS-Geo Technology Use Effectiveness on the Studied Promising Objects 8.2 Detailed Study of Carboniferous, Upper and Middle Devonian Deposits (Orenburg Region) 8.2.1 Processing and Interpretation of GBS Materials 8.2.2 Geological Structure Prediction along Reference Lines 8.2.3 Prediction Geological Indicators According to HRS, GBS Data, and Area Drilling 8.2.4 Comparison of Oil Saturation Contours 8.2.5 The Results of the Identified Object Opening 8.3 Geological Indicator Estimation in Productive and Prospective Middle and Lower Carboniferous and Upper and Middle Devonian... 8.3.1 Automated Processing and Interpretation of GBS Data 8.3.2 Prediction of Geological Structure along Reference Profiles 8.3.3 The Results of Structural Constructions 8.3.4 Volume Structural Tectonic Model of the Real Medium 8.3.5 Area Prognosis: Geological and Geophysical Indicators in the Sediments of the Kynov Horizon 8.3.6 Area Prognosis: Geological and Geophysical Indicators in the Sediments of the Pashiisk Horizon 8.3.7 Area Prognosis: Geological and Geophysical Indicators in the Sediments of the Ardatov Horizon 8.3.8 Prospective Areas for Optimal Opening of Predicted Oil-Saturated Objects 8.4 Summary References Chapter 9: Examples of HRS-Geo Technology Used in Other Regions 9.1 Structural-, Tectonical-, and Lithological-Shielded Oil-Perspective Object Identification in Reservoirs of the Upper Devon... 9.1.1 Structure Features of the Incised Valley According to High-Resolution Seismic Data 9.1.2 Channel Filling Features of the Buried River System 9.2 Structural-, Tectonical-, and Lithological-Screened Oil-Perspective Objects in the Jurassic Complex and the Top of the Pre... 9.2.1 Automated Processing and Interpretation of GBS Materials 9.2.2 Prediction of Geological Structure along Reference Profiles 9.2.3 Tectonic Disturbance Manifestations in the Research Area 9.2.4 The Results of Structural Constructions 9.2.5 Area Geological Indicators According to HRS, GBS, and Drilling Data 9.2.6 Structure of the Upper Part of the Pre-Jurassic Basement 9.2.7 Perspective Points for Optimal Opening of Predicted Oil-Prospective Objects 9.3 Composition and Property of Oil-Perspective Strata Prediction Using High-Resolution Seismic Data (Saudi Arabia) 9.3.1 Geological Structure of the Study Area 9.3.2 Processing and Interpretation of Deep Well GBS Data 9.3.3 Prediction of Geological Indicators in the Sublatitudinal Direction 9.3.4 Prediction of Geological Indicators in the Submeridian Direction 9.3.5 Afterword 9.4 Summary References Conclusion Index