دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Reprint
نویسندگان: Mohamed A. El-Reedy
سری:
ISBN (شابک) : 0128161914, 9780128161913
ناشر: Gulf Professional Publishing
سال نشر: 2019
تعداد صفحات: 682
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Offshore Structures: Design, Construction and Maintenance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سازه های دریایی: طراحی، ساخت و نگهداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سازههای فراساحلی: طراحی، ساخت و نگهداری، ویرایش دوم انواع سازهها و سکوهای فراساحلی را پوشش میدهد که در سراسر جهان استفاده میشوند. این کتاب به عنوان مرجع نهایی برای انتخاب، بهره برداری و نگهداری سازه های دریایی، نقشه راه طراحی سازه هایی را ارائه می دهد که حتی در سخت ترین محیط ها نیز پابرجا خواهند ماند. طراحی و نصب خط لوله زیر دریا نیز در این نسخه پوشش داده شده است، همانطور که انتخاب نوع مناسب سازه دریایی، روش طراحی برای سازه دریایی ثابت، تحلیل غیرخطی (Push over) به عنوان یک تکنیک جدید برای طراحی و ارزیابی سازه موجود است. ، و بیشتر.
با در دست داشتن این کتاب، مهندسان به روزترین روش ها را برای انجام تجزیه و تحلیل چرخه عمر سازه، اجرای طرح های تعمیر و نگهداری برای قسمت های بالایی و ژاکت ها و استفاده از آزمایش های غیر مخرب خواهند داشت.
Offshore Structures: Design, Construction and Maintenance, Second Edition covers all types of offshore structures and platforms employed worldwide. As the ultimate reference for selecting, operating and maintaining offshore structures, this book provides a roadmap for designing structures which will stand up even in the harshest environments. Subsea pipeline design and installation is also covered in this edition, as is the selection of the proper type of offshore structure, the design procedure for the fixed offshore structure, nonlinear analysis (Push over) as a new technique to design and assess the existing structure, and more.
With this book in hand, engineers will have the most up-to-date methods for performing a structural lifecycle analysis, implementing maintenance plans for topsides and jackets and using non-destructive testing.
Cover Offshore Structures: Design, Construction and Maintenance Copyright Dedication Contents About the author Preface 1 Introduction to offshore structures 1.1 Introduction 1.2 History of offshore structures 1.3 Overview of field development 1.3.1 Field development cost 1.3.2 Multicriteria concept selection 1.4 Front end engineering design requirements 1.5 Types of offshore platforms 1.5.1 Drilling/well-protected platform 1.5.2 Tender platforms 1.5.3 Self-contained platforms 1.5.4 Production platform 1.5.5 Quarters platform 1.5.6 Flare jacket and flare tower 1.5.7 Auxiliary platform 1.5.8 Bridges 1.5.9 Heliport 1.6 Different types of offshore structures 1.6.1 Concrete gravity platform 1.6.2 Floating production, storage, and offloading 1.6.3 Tension-leg platform Reference Further reading 2 Offshore structure loads and strength 2.1 Introduction 2.2 Gravity load 2.2.1 Dead load 2.2.2 Live load 2.2.3 Impact load 2.2.4 Design for serviceability limit state Vibrations Deflections 2.2.5 Helicopter landing loads Loads for helicopter landing Loads for helicopters at rest Helicopter static loads Area load Helicopter tie-down loads Wind loading Installation motion Safety net arms Design load conditions Example of helicopter load 2.2.6 Crane support structure 2.3 Wind load 2.4 Example for stair design 2.4.1 Gravity loads 2.4.2 Wind loads 2.5 Offshore loads 2.5.1 Wave load Comparison between wind and wave calculations Conductor shielding factor 2.5.2 Current force Design current profiles Current profile 2.5.3 Earthquake load Strength requirements Ductility requirements Topsides appurtenances and equipment 2.5.4 Ice loads 2.5.5 Other loads Marine growth Scour 2.6 Design for ultimate limit state 2.6.1 Load factors 2.6.2 Extreme environmental situation for fixed offshore platforms 2.6.3 Operating environmental situations—fixed platforms 2.6.4 Partial action factors 2.7 Collision events 2.7.1 Accidental impact energy Total kinetic energy 2.7.2 Dropped objects 2.8 Fires and explosions 2.9 Material strength 2.9.1 Steel groups 2.9.2 Steel classes Structural steel pipe Selection for conditions of service Cement grout References Further reading 3 Offshore structure platform design 3.1 Introduction 3.2 Preliminary dimensions 3.2.1 Approximate dimensions 3.3 Bracing system 3.4 Jacket design 3.5 Structure analysis 3.5.1 Global structure analysis 3.5.2 The loads on piles 3.5.3 Modeling techniques Joint coordinates Local member axes Member effective lengths Joint eccentricities 3.5.4 Dynamic structure analysis Natural frequency 3.5.5 In-place analysis according to ISO 19902 3.6 Cylinder member strength 3.6.1 Cylinder member strength calculation according to ISO 19902 Axial tension Axial compression Column buckling Local buckling Bending Shear Torsional shear Hydrostatic pressure Hoop buckling Tubular members subjected to combined forces without hydrostatic pressure Axial tension and bending Axial compression and bending Tubular members subjected to combined forces with hydrostatic pressure Axial tension, bending, and hydrostatic pressure Axial compression, bending, and hydrostatic pressure Effective lengths and moment reduction factors 3.6.2 Cylinder member strength calculation Axial tension Axial compression Local buckling Elastic local buckling stress Inelastic local buckling stress Bending Shear Torsional shear Pressure on stiffened and unstiffened cylinders Design hydrostatic head Hoop buckling stress Elastic hoop buckling stress Critical hoop buckling stress Combined stresses for cylindrical members Combined axial compression and bending Member slenderness Combined axial tension and bending Axial tension and hydrostatic pressure Axial compression and hydrostatic pressure Safety factors 3.7 Tubular joint design 3.7.1 Simple joint calculation API RP2A (2007) Joint classification and detailing Simple tubular joint calculation Strength factor Qu Chord load factor Qf Joints with thickened cans Strength check Overlapping joints Grouted joints 3.7.2 Joint calculation according to API RP2A (2000) Punching shear Allowable joint capacity Tubular joint punching failure 3.7.3 Fatigue analysis Stress concentration factors SCFs in grouted joints S–N curves for all members and connections S–N curves for tubular connections Thickness effect Fatigue design for a jacket 3.8 Topside design 3.8.1 Grating design 3.8.2 Handrails, walkways, stairways, and ladders 3.9 Boat landing design 3.9.1 Boat landing calculation Cases of impact load 3.9.2 Riser guard design Cases of impact load 3.9.3 Boat landing design using the nonlinear analysis method 3.9.4 Boat impact methods 3.9.5 Tubular member denting analysis Simplified method for denting limit calculation Nonlinear finite element method analysis 3.10 Riser guard 3.11 On-bottom stability 3.12 Bridges 3.13 Crane loads 3.14 Lift installation loads 3.15 Vortex-induced vibrations 3.16 Helideck design 3.17 Structure analysis and design quality control References Further Reading 4 Geotechnical data and pile design 4.1 Introduction 4.2 Investigation procedure 4.2.1 Performing an offshore investigation 4.2.2 Drilling equipment and method 4.2.3 Wire-line sampling technique 4.2.4 Offshore soil investigation problems 4.3 Soil tests 4.4 In situ testing 4.4.1 Cone penetration test Equipment requirements CPT testing procedure Calibration requirements CPT results 4.4.2 Field vane test Testing procedure 4.5 Soil properties 4.5.1 Strength 4.5.2 Soil characteristics 4.6 Pile foundations 4.6.1 Pile capacity for axial loads Skin friction and end bearing in cohesive soils Shaft friction and end bearing in cohesionless soils 4.6.2 Foundation size Pile penetration 4.6.3 Axial pile performance Static load-deflection behavior Cyclic response Axial load-deflection (t–z and Q–z) data Axial pile capacity Laterally loaded pile reactions Lateral bearing capacity for soft clay Lateral bearing capacity for stiff clay Lateral bearing capacity for sand Alternative methods for determining pile capacity Establishing design strength and effective overburden stress profiles Time affects changes in the axial capacity in clay soil 4.6.4 Pile capacity calculation methods Simplified ICP-05 Offshore UWA-05 Fugro-05 NGI-05 Application of CPT 4.6.5 Pile capacity under cyclic loadings Cyclic loading effects Analytical models Discrete element models Continuum models 4.7 Scour 4.8 Pile wall thickness 4.8.1 Pile stresses 4.8.2 Stresses due to the hammer effect 4.8.3 Minimum wall thickness 4.8.4 Driving shoe and head 4.8.5 Pile section lengths 4.9 Pile drivability analysis 4.9.1 Evaluation of soil resistance drive 4.9.2 Unit shaft resistance and unit end bearing for uncemented materials 4.9.3 Upper- and lower-bound soil resistance drive 4.9.4 Results of wave equation analyses 4.9.5 Results of drivability calculations 4.9.6 Recommendations for pile installation 4.10 Soil investigation report 4.11 Conductor support platform References Further Reading 5 Fabrication and installation 5.1 Introduction 5.2 Construction procedure 5.3 Engineering of execution 5.4 Fabrication 5.4.1 Joint fabrication 5.4.2 Fabrication based on international standards organization Tubular members and joints Slotted members Grouted pile to sleeve connections Heat straightening Rat-holes, penetrations, and cut-outs Movement, erection, and roll-up of subassemblies Fabrication tolerances Legs spacing tolerance Vertical level tolerance Tubular member tolerance Tolerance of leg alignment and straightness Tubular joint tolerance Stiffener tolerances Conductor guides and piles tolerances Dimensional control 5.5 Jacket assembly and erection 5.6 Weight control 5.6.1 Weight calculation Classification of weight accuracy Allowances and contingencies Management contingency Operating contingency Weight engineering procedures 5.7 Loads from transportation, launch, and lifting operations 5.8 Lifting procedure and calculation 5.8.1 Lifting calculation Calculated weight Hook load Skew load factor Resolved padeye load Sling force Crane lift factors Part sling factor Termination efficiency factor Bending efficiency factor Grommets Shackle safety factors Consequence factors 5.8.2 Structural calculation for lifting 5.8.3 Lift point design 5.8.4 Clearances Clearances around the lifted object Clearances around the crane vessel 5.8.5 Lifting calculation report The crane vessel 5.8.6 Bumpers and guides Module movement 5.9 Loadout process 5.10 Transportation process 5.10.1 Supply boats 5.10.2 Anchor-handling boats 5.10.3 Towboats 5.10.4 Towing 5.10.5 Drilling vessels 5.10.6 Crew boats 5.10.7 Barges 5.10.8 Crane barges 5.10.9 Offshore derrick barges (fully revolving) 5.10.10 Jack-up construction barges 5.11 Transportation loads 5.12 Launching and upending forces 5.13 Installation and pile handling References Further reading 6 Corrosion protection 6.1 Introduction 6.1.1 Corrosion in seawater 6.1.2 Steel corrosion in seawater 6.1.3 Choice of system type 6.1.4 Geometric shape 6.2 Coatings and corrosion protection of steel structures 6.3 Corrosion stresses due to the atmosphere, water, and soil 6.3.1 Classification of environments Categories for water and soil 6.3.2 Mechanical, temperature, and combined stresses 6.4 General cathodic protection design considerations 6.4.1 Environmental parameters affecting cathodic protection 6.4.2 Design criteria 6.4.3 Protective potentials 6.4.4 Detrimental effects of cathodic protection 6.4.5 Galvanic anode materials 6.4.6 Cathodic protection design parameters Design life Design current densities Coating breakdown factors for cathodic protection design Galvanic anode material design parameters Anode resistance formulas Seawater and sediment resistivity Anode utilization factor Current drain design parameters 6.4.7 Cathodic protection calculation and design procedures Current demand calculations Selection of anode type Anode mass calculations Calculation of anode number Calculation of anode resistance Anode design precaution Distribution of anodes 6.5 Design example 6.6 General design considerations 6.7 Anode manufacture 6.8 Installation of anodes 6.9 Anode dimension tolerance 6.9.1 Internal and external inspection Reference Further Reading 7 Assessment of existing structures and repairs 7.1 Introduction 7.2 American Petroleum Institute RP2A historical background 7.2.1 Environmental loading provisions Morison’s equation Wave theories Selection of design condition Deck clearance or air gap The latest editions of RP2A working stress design and load resistance factor design 7.2.2 Regional environmental design parameters 7.2.3 Member resistance calculation 7.2.4 Joint strength calculation 7.2.5 Fatigue 7.2.6 Foundation design 7.3 Historical review of Department of Energy/Health and Safety Executive guidance notes 7.3.1 Environmental loading provisions 7.3.2 Joint strength equations 7.3.3 Fatigue 7.3.4 Foundations 7.3.5 Definition of design condition 7.3.6 Currents 7.3.7 Wind 7.3.8 Waves 7.3.9 Deck air gap 7.3.10 Historical review of major North Sea incidents 7.4 Historical assessment of UK environmental loading design practice 7.4.1 Design environmental parameters 7.4.2 Fluid loading analysis 7.5 Development of American Petroleum Institute RP2A member resistance equations 7.6 Allowable stresses for cylindrical members 7.6.1 Axial tension 7.6.2 Axial compression 7.6.3 Bending 7.6.4 Shear 7.6.5 Hydrostatic pressure 7.6.6 Combined axial tension and bending 7.6.7 Combined axial compression and bending 7.6.8 Combined axial tension and hydrostatic pressure 7.6.9 Combined axial compression and hydrostatic pressure 7.6.10 American institute of steel construction historical background 7.6.11 Pile design historical background 7.6.12 Effects of changes in tubular member design 7.7 Failure due to fire 7.7.1 Degree of utilization 7.7.2 Tension member design by EC3 7.7.3 Unrestrained beams 7.7.4 Example: strength design for steel beam 7.7.5 Steel column: strength design 7.7.6 Case study for a deck under fire 7.8 Platform failure case study 7.9 Failure mechanism 7.9.1 Strength reduction 7.9.2 Environmental load effect 7.9.3 Structure assessment 7.10 Assessment of platform 7.10.1 Nonlinear structure analysis in ultimate strength design General purpose nonlinear beam column models Plastic hinge beam column models Phenomenological models Shell FE models Modeling the element Conductor connectivity 7.10.2 Structural modeling Secondary framework Dented beam and cracked joint 7.10.3 Determine the probability of structural failure 7.10.4 Establish acceptance criteria 7.10.5 Reliability analysis Limit state function First-order reliability method 7.10.6 Software requirement 7.11 Offshore platform decommissioning 7.11.1 Decommissioning methods Small pieces Large pieces Single lift 7.11.2 Cutting tools 7.11.3 Case study for platform decommissioning 7.12 Scour problem 7.13 Offshore platform repair 7.13.1 Deck repair 7.13.2 Reduce the loads Marine growth removal Vibration monitoring 7.13.3 Jacket repair 7.13.4 Dry welding Dry welding in topsides Dry welding at or below the sea surface Hyperbaric welding Platform underwater repair 7.13.5 Platform “shear pups” repair 7.13.6 Underwater repair for a platform structure 7.13.7 Case study 2: platform underwater repair 7.13.8 Clamps Stressed mechanical (friction) clamps Unstressed grouted clamp connections Stressed grouted clamps Stressed elastomer-lined clamp Drilling platform stabilization post Hurricane Lili 7.13.9 Grouting Joint grouting Grout filling of members Allowable axial force calculation Composite technology Reinforced epoxy grout Fiber reinforced polymer composites 7.13.10 Example of using fiber reinforced polymer 7.13.11 Case study for conductor composite repair 7.13.12 Fiberglass access decks 7.13.13 Fiberglass mudmats 7.13.14 Case study 1: flare repair 7.13.15 Case study 2: repair of the flare jacket 7.13.16 Case study 3: repair of the bearing support References Further Reading 8 Risk-based inspection technique 8.1 Introduction 8.2 Structure integrity management methodology 8.3 Quantitative risk assessment for fleet structures 8.3.1 Likelihood (probability) factors Interactions Likelihood calculation for strength Design practice Number of legs and bracing configuration Piles system Risers and conductors Boat landings Grouted piles Damaged, missing, and cut members Splash zone corrosion and damage Flooded members CP surveys and anode depletion Inspection history Remaining wall Likelihood calculation for load Design loading Marine growth Scour Topside weight change Additional risers, caissons, and conductors Wave-in-deck Earthquake load Likelihood categories Consequence factors Environmental losses Business losses Safety consequences Consequence categories 8.3.2 Overall risk ranking 8.4 Underwater inspection plan 8.4.1 Underwater inspection (according to API SIM 2005) 8.4.2 Baseline underwater inspection 8.4.3 Routine underwater inspection scope of work 8.4.4 Inspection plan based on ISO 9000 8.4.5 Inspection and repair strategy Expected total cost Optimization strategy 8.4.6 Flooded member inspection Final inspection reporting 8.5 Anode retrofit maintenance program 8.6 Assessment process 8.6.1 Collecting data 8.6.2 Structure assessment Simple methods Design-level method Ultimate strength method Damage modeling Actual yield stress Effective length factors Soil strength Alternative assessment methods Historical performance Explicit probabilities of survival Acceptance criteria 8.7 Mitigation and risk reduction 8.7.1 Consequence mitigation 8.7.2 Reduction probability of platform failure Load reduction Gravity and hydrodynamic loading Raising the deck Strengthening Member flooding 8.8 Occurrence of member failures with time References Further reading 9 Subsea pipeline design and installation 9.1 Introduction 9.2 Pipeline project stages 9.2.1 Pipeline design management 9.3 Pipeline design codes 9.3.1 Pipeline route design guidelines 9.4 Design deliverables 9.4.1 Pipeline design Pipeline bursts The collapse Buckle propagation Buckling On-bottom stability 9.4.2 Near-shore pipeline 9.4.3 Methods of stabilization 9.4.4 Combined current and wave in pipeline 9.4.5 Impact load 9.4.6 Pipeline free span 9.5 Concrete coating 9.5.1 Inspection and testing 9.6 Installation 9.6.1 S-lay 9.6.2 J-lay 9.6.3 Reel-lay 9.6.4 Piggyback installation 9.7 Installation management References Further reading Index Back Cover