دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Abdus Samad · S. A. Sannasiraj · V. Sundar · Paresh Halder
سری:
ISBN (شابک) : 9783030787158, 9783030787165
ناشر:
سال نشر: 2022
تعداد صفحات: 585
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Ocean Wave Energy Systems Hydrodynamics, Power Takeoff and Control Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هیدرودینامیک انرژی امواج اقیانوس، سیستم های برخاست و کنترل نیرو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بررسی به موقع انرژی موج و مکانیسم های تبدیل آن را ارائه می دهد. این کتاب با در نظر گرفتن نیازهای فعلی دانشجویان مهندسی پیشرفته در مقطع کارشناسی، کل فرآیند تولید انرژی از امواج گرفته تا برق را به صورت سیستماتیک و جامع پوشش می دهد. پس از یک مقدمه کلی در زمینه انرژی موج، روشهای محاسباتی تحلیلی برای تخمین پتانسیل انرژی موج در هر مکان معین ارائه میکند. علاوه بر این، پرتاب توان (PTOs) را پوشش میدهد و جنبههای مکانیکی و الکتریکی آنها را با جزئیات توصیف میکند و سیستمها و الگوریتمهای کنترلی را نیز شامل میشود. این کتاب شامل فصل هایی است که توسط محققان فعال با تجربه گسترده در زمینه تخصصی مربوطه نوشته شده است. این جنبه های اساسی را با تحقیقات و روش های پیشرفته و مطالعات موردی انتخاب شده ترکیب می کند. این کتاب دانش سیستماتیک و عمل محور را به دانشجویان، محققان و متخصصان در بخش انرژی موج ارائه می دهد. فصل 17 این کتاب با دسترسی آزاد تحت مجوز CC BY 4.0 در link.springer.com در دسترس است
This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com
Preface Contents Contributors 1 Wave Energy Potential 1.1 World Energy Outlook 1.2 Ocean Energy 1.3 Environmental Impacts 1.4 Tidal Datum 1.5 Importance of Wave Energy 1.6 Wave Power Potential 1.6.1 Methods of Evaluation 1.6.2 Estimated Wave Power Potential 1.7 Wave Energy Map for INDIA References 2 Wave Energy Convertors 2.1 General 2.2 Harnessing of Wave Energy 2.3 Conversion Process 2.4 Wave Energy Devices 2.5 Wave Energy Developments and Activities 2.5.1 General 2.5.2 Shoreline Wave Energy System 2.5.3 Near Shore Wave Energy System 2.5.4 Offshore Wave Energy Systems 2.6 Onshore/Nearshore OWC Wave Energy Devices 2.7 Offshore OWC Wave Energy Devices 2.8 Special Types of Breakwaters with WEC 2.9 Summary References 3 Direct Absorber for Wave Energy Conversion 3.1 Introduction 3.1.1 Wave Energy Physics and Resource 3.2 Theoretical Background and Governing Equations 3.2.1 Linear Wave Theory of Ocean Surface (LWT) 3.2.2 Dispersion Relation 3.2.3 Energy in Water Wave 3.2.4 Wave Energy Spectrum 3.2.5 Forces on Floating Bodies 3.3 Wave Energy Conversion Systems 3.3.1 Attenuator 3.3.2 Oscillating Wave Surge Converter 3.3.3 Oscillating Water Column 3.3.4 Overtopping Device 3.3.5 Submerged Pressure 3.3.6 Point Absorber 3.4 Conclusion References 4 Development of Oscillating Water Column and Wave Overtopping—Wave Energy Converters in Europe Over the Years 4.1 The Importance of Wave Energy Resources Utilisation 4.2 A Brief Introduction to Wave Energy Harvesting Mechanism 4.3 Oscillating Water Column (OWC) Type Wave Energy Converter 4.3.1 General Introduction of OWC 4.3.2 Working Principle and Design Analysis of OWC 4.4 Oscillating Water Column Type WEC Projects Developments History 4.4.1 Land Installed Marine Power Energy Transmitter (LIMPET) 4.4.2 Pico Power Plant 4.4.3 Mutriku Wave Energy Plant 4.4.4 Resonant Wave Energy Converter (REWEC) or U-OWC 4.4.5 Siadar Wave Power Project 4.4.6 Floating OWC Development 4.5 Brief Summary of Wave Overtopping Devices’ Development Over the years 4.5.1 General Introduction to Wave Overtopping Mechanism 4.5.2 Wave Loadings Analysis and Development of Sea-Wave Slot-Cone Generator (SSG) 4.5.3 Overtopping BReakwater for Energy Conversion (OBREC) Development References 5 Performance Characteristics of an OWC in Regular and Random Waves 5.1 Introduction 5.2 Experimental Investigations 5.2.1 OWC Model 5.2.2 Experimental Program 5.2.3 Harbour Walls in OWC 5.2.4 Wave Characteristics for the Study 5.2.5 Hydrodynamic Factors 5.3 Results and Discussion 5.3.1 Regular Wave Tests 5.3.2 Random Waves 5.3.3 OWC with Inclined Harbour Walls in Regular and Random Wave Fields 5.4 Summary and Conclusions References 6 Wave Induced Pressures and Forces on an OWC Device 6.1 Introduction 6.2 Literature Review 6.3 Experimental Investigation 6.3.1 Test Facility 6.3.2 Test Model and Experimental Set-Up 6.3.3 Instrumentation 6.3.4 Wave Characteristics 6.4 Hydrodynamic Parameters 6.5 Results and Discussion 6.5.1 Time Histories of Measured Signatures 6.5.2 Pressure Distribution in Front of the Lip Wall 6.5.3 Pressure Distribution at the Rear Wall of OWC Device 6.5.4 Air Pressure Inside the OWC Caisson 6.5.5 Horizontal Wave Force 6.5.6 Vertical Wave Force 6.5.7 Comparison of Measured and Estimated Horizontal Wave Force 6.5.8 Total Horizontal and Vertical Wave Forces Due to Random Waves 6.6 Summary and Conclusions References 7 Hydrodynamic Performance Characteristics of U-OWC Devices 7.1 Introduction 7.2 Experimental Set-Up 7.2.1 General 7.2.2 Details of the Models and Test Set-Up 7.2.3 Test Facility 7.2.4 Experimental Procedure 7.3 Results and Discussion 7.3.1 Spectral Width Parameter 7.3.2 Dynamic Pressures 7.3.3 Energy Efficiency 7.3.4 Air Pressure Variation 7.3.5 Phase Difference 7.3.6 Wave Amplification 7.4 Conclusions References 8 CFD Modelling of OWC Devices for Wave Energy Harnessing 8.1 Introduction 8.2 The Numerical Experiment 8.2.1 Computational Domain 8.2.2 Mesh 8.2.3 Boundary Conditions 8.3 Governing Equations 8.3.1 Pressure-Based Solver 8.3.2 Pressure–Velocity Coupling 8.3.3 Solution Control Parameters 8.4 Under-Relaxation Factors 8.4.1 Spatial Discretization of Equations 8.4.2 Reconstruction of Gradients 8.4.3 Time Discretization 8.5 Multiphase Flow 8.5.1 The Volume of Fluid (VOF) 8.6 Explicit Scheme 8.7 Implicit Scheme 8.7.1 Interpolation Near the Water–air Interface 8.7.2 Wave Generation 8.7.3 Dynamic Mesh 8.8 Dynamic Mesh Update 8.9 Elastic Smoothing Method 8.9.1 Open Channel Boundary Condition 8.10 PTO System and Configuration of the Porous Medium Region 8.11 Simulation, Data Saving, and Post-Processing 8.12 Conclusions References 9 Numerical Modelling Techniques for Wave Energy Converters in Arrays 9.1 Introduction 9.2 Review of Hydrodynamic Modelling of WEC Arrays 9.2.1 Point Absorber Method 9.2.2 Plane-Wave Method 9.2.3 Multiple Scattering 9.2.4 Direct Matrix Method 9.2.5 Geographical Scale Studies 9.3 Boundary Element Methods 9.3.1 Problem Definition 9.3.2 Mathematical Formulation 9.3.3 Generated Power and Interaction Factor 9.3.4 Wave Disturbance Under Multi-Directional Sea 9.4 Verification of the Numerical Model 9.4.1 Performance of Arrays 9.5 WEC Array Modelling by Ocean Scale Numerical Models 9.5.1 Numerical Model Set-Up 9.5.2 Predictions Without Energy Extraction 9.5.3 Implementation of Energy Extraction 9.6 Concluding Remarks References 10 Hydrodynamic Performance of an Array of OWC Devices Integrated with Breakwater 10.1 Introduction 10.2 Experimental Investigation 10.2.1 Test Facility 10.2.2 Data Acquisition Sensors 10.2.3 Test Model and Experimental Setup 10.2.4 Instrumentation 10.2.5 Wave Characteristics and Hydrodynamic Parameters 10.3 Results and Discussion 10.3.1 Time Histories 10.3.2 Effect of Wave Characteristics 10.3.3 Wave Interaction Between Devices 10.3.4 Effect of Spacing 10.3.5 Performance of OWC in an Array 10.3.6 Total Performance vs. Average Performance 10.3.7 Reflection Nature of OWCBW System 10.4 Hydrodynamic Performance of OWCBW System Subjected to Oblique Wave Incidence 10.5 Summary and Conclusions 10.5.1 The Salient Conclusions Drawn from the Studies Are References 11 Power Take-Off Devices for Wave Energy Converters 11.1 Introduction to Wave Energy 11.2 Types of Power Take-Off Mechanisms Used in Point Absorbers 11.2.1 Air Turbines 11.2.2 Hydraulic Converters 11.2.3 Hydro Turbines 11.2.4 Direct Mechanical Drive Systems 11.2.5 Direct Electrical Drive Systems 11.3 Conclusion References 12 Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters 12.1 Introduction 12.2 Historical Overview 12.3 Wells Turbine: Principle of Operation 12.4 Variations of Wells Turbine 12.4.1 Monoplane Wells Turbine 12.5 Turbines with Guide Vane 12.6 Turbines with Non-zero Pitch Angles 12.7 Turbines with Variable Pitch Angles 12.8 Unsteady Flow Analysis 12.9 Starting Characteristics of Wells Turbine 12.10 Optimization of Air Turbines 12.11 Conclusion References 13 Experimental Testing of Air Turbines for Wave Energy Conversion 13.1 Introduction 13.2 Experimental Setup 13.3 Instrumentation: Sensors and Data Acquisition Systems 13.4 Generator Selection 13.5 Generator Characteristics 13.6 Experimental Procedure 13.7 Experimental Testing of an Impulse Turbine 13.7.1 Design and Fabrication 13.7.2 No-Load Test 13.7.3 Performance of the Turbine 13.7.4 Power Calculation: Load Test 13.8 Experimental Testing of a Wells Turbine 13.8.1 Design and Fabrication 13.8.2 Starting Characteristics 13.8.3 No-Load Test 13.8.4 Test with Resistive Loading 13.9 Uncertainty Analysis 13.10 Conclusions References 14 Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion—A Review 14.1 Wave Energy 14.2 Oscillating Water Column 14.3 Air Turbines for Wave Energy Conversion 14.3.1 Wells Turbine 14.3.2 Axial Impulse Turbine 14.4 Flow Control Methods 14.5 Passive Flow Control Methods in Wells Turbine 14.5.1 Blade Sweep 14.5.2 Blade Setting Angle 14.5.3 Penetrating Ring and Endplate at the Blade Tip 14.5.4 Non-uniform Tip Clearance 14.5.5 Variable Chord Blade 14.5.6 Casing Groove 14.5.7 Suction Slots 14.5.8 Variable Thickness Blade 14.5.9 Leading-Edge Undulation 14.5.10 Radiused Edge Tip Blade 14.5.11 Static Extended Trailing Edge (SETE) 14.5.12 Gurney Flap 14.5.13 Combined Radiused Edge Tip, Static Extended Trailing Edge, and Variable Thickness Blade 14.6 Passive Flow Control Methods in Axial Impulse Turbine 14.6.1 Endplates 14.6.2 Blade Setting Angle 14.6.3 Penetration Ring 14.6.4 Leaned Blade 14.7 Conclusions References 15 Optimization of an Impulse Turbine for Efficient Wave Energy Extraction 15.1 Introduction 15.2 Oscillating Water Column 15.3 Turbine Selection for OWC 15.4 Numerical Studies on Impulse Turbine 15.4.1 Background Study 15.4.2 Steps Involved in Performing CFD Simulations 15.4.3 Case Study on CFD Simulations for an Impulse Turbine for Wave Energy Extraction 15.5 Optimization 15.5.1 Design Variable and Objective Function 15.5.2 Design Space 15.5.3 Use of Surrogates Method to Populate Sampling Points 15.5.4 Genetic Algorithm as an Optimizer 15.6 Results and Discussions Based on Optimization of Impulse Turbine 15.6.1 Design Space 15.6.2 Sensitivity of Design Variable 15.6.3 Results from Optimization Algorithm 15.6.4 Results for Optimized Turbine Over Wide Flow Range 15.6.5 Parametric Sensitivity Analysis 15.7 Closure References 16 Control of Wave Energy Converters 16.1 Introduction 16.2 Control Techniques Applied to WECs 16.2.1 Control of WEC Primary Parameters 16.2.2 Airflow Control 16.2.3 Control of Secondary Converters 16.3 Conclusion References 17 Recent Advances in Direct-Drive Power Take-Off (DDPTO) Systems for Wave Energy Converters Based on Switched Reluctance Machines (SRM) 17.1 Introduction 17.2 Power Take-Off (PTO) in Wave Energy Converters 17.2.1 Introduction to PTO-Concept 17.2.2 Introduction to the Different Types of PTOs 17.3 Direct-Drive Power Take-Off: SRM Topology 17.3.1 Introductory Aspects 17.3.2 Example of an Analysis of a WEC with a DDPTO 17.3.3 The Linear Switched Reluctance Machine (LSRM) 17.3.4 SRM Power Electronics and Control 17.4 Superconducting Linear Switched Reluctance Machine (LSRM) 17.4.1 Introduction 17.4.2 The Importance of High Force/High Efficiency PTOs 17.4.3 Some Simple Concepts on Superconductivity and Cryogenics 17.4.4 Options for Superconducting Machines: A Superconducting PTO 17.5 Concluding Remarks References 18 Grid Integration of Wave Energy Devices 18.1 Introduction: Wave Energy Impacts in Electric Grid 18.1.1 Impact in the Power Grid of Renewable Energy 18.1.2 Current Status and Perspectives of Ocean Energy 18.1.3 Problems with the Grid Integration of Wave Energy Converters 18.2 Power Oscillations in Wave Energy Generation 18.2.1 Wave Energy Resource: Characterization of Oscillations 18.2.2 Evaluation of Electric Power Oscillations in Wave Energy Converters 18.2.3 Evaluation of Impacts on the Electric Grid 18.3 Analysis of Smoothing Power Solutions 18.3.1 Introduction: Relevant Solutions for Wave Power Smoothing 18.3.2 Analysis of Energy Storage as Power Smoothing Solution 18.4 Integration of Energy Storage System in Wave Energy Converters: Industrial Examples References