ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Object-Oriented Programming with Python

دانلود کتاب برنامه نویسی شی گرا با پایتون

Object-Oriented Programming with Python

مشخصات کتاب

Object-Oriented Programming with Python

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: Independently Published 
سال نشر: 2024 
تعداد صفحات: 337 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 330 Kb 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Object-Oriented Programming with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب برنامه نویسی شی گرا با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Advanced Topics in Object-Oriented Programming in Python
Applying Design Patterns from the Gang of Four GoF and other sources to Python Object-Oriented Programming
   1. Singleton Pattern
   2. Factory Method Pattern
   3. Observer Pattern
Best Practices and Tips for Object-Oriented Programming in Python
Building Command-Line Interfaces CLI with Object-Oriented Programming in Python
Building Custom Frameworks and Libraries with Object-Oriented Programming in Python
   Step 1: Define r Requirements
   Step 2: Design r Classes
   Step 3: Implement r Classes
   Step 4: Provide Documentation
   Step 5: Include Unit Tests
   Step 6: Package r Code
   Step 7: Publish r Code
   Step 8: Maintain and Iterate
   Example:
Building Data Warehousing and Business Intelligence Solutions with Object-Oriented Python
Building Digital Twins and Simulation Models for Industry 40 with Object-Oriented Python
Building Distributed Computing Systems with Object-Oriented Programming in Python
Building Energy Management Systems and Smart Grid Solutions with Object-Oriented Python
Building Enterprise Resource Planning ERP and Customer Relationship Management CRM Systems with Object-Oriented Python
   1. Define Requirements:
   2. Design the System:
   3. Choose Frameworks and Libraries:
   4. Implement Functionalities:
   5. Integrate ERP and CRM:
   6. Testing:
   7. Deployment and Maintenance:
   Example Code Snippet:
   Conclusion:
Building Knowledge Graphs and Semantic Web Applications using Object-Oriented Python
Building Natural Disaster Prediction and Emergency Response Systems with Object-Oriented Python
   1. Define the Problem
   2. Design the System
   3. Implementation
   4. Data Collection and Processing
   5. Prediction
   6. Emergency Response Planning
   7. Testing and Iteration
   8. Deployment
   Additional Considerations
Building Recommendation Systems with Object-Oriented Programming in Python
   1. Define Classes:
   2. Implement Recommendation Algorithms:
   3. Construct Recommendation System:
   4. Extend and Optimize:
Building Recommender Systems and Personalization Engines using Object-Oriented Programming in Python
Building Scalable Web Applications with Object-Oriented Programming and Frameworks like Django or Flask
Case Studies and Real-World Applications of Object-Oriented Programming in Python
Class Methods and Static Methods in Python
Classes and Objects in Python
   Classes:
   Objects:
   Example:
Composition and Aggregation in Python
Concurrency and Multithreading in Python
Continuous Integration and Deployment CICD for Object-Oriented Python Projects
Creating Blockchain-based Smart Contracts and Decentralized Applications DApps with Object-Oriented Python
Creating Custom Visualization Libraries and Tools with Object-Oriented Python
   Step 1: Define the Structure
   Step 2: Design the Class Hierarchy
   Step 3: Implement Customization Options
   Step 4: Implement Rendering Logic
   Step 5: Provide Examples and Documentation
   Step 6: Test and Iterate
   Example Usage:
Creating Cybersecurity Tools and Threat Intelligence Platforms with Object-Oriented Programming in Python
   1. Define Classes:
   2. Implement Encapsulation:
   3. Use Inheritance:
   4. Implement Polymorphism:
   5. Handle Exceptions:
   6. Use Design Patterns:
   7. Implement Data Structures:
   8. Secure Input and Output:
   9. Unit Testing:
   10. Document r Code:
Creating Digital Humanities Tools and Text Analysis Pipelines with Object-Oriented Programming in Python
   1. Define Object Classes:
   2. Implement Methods and Functionality:
   3. Design Text Analysis Pipelines:
   4. Extend and Customize:
   5. Testing and Refinement:
Creating Domain-Specific Languages DSLs using Object-Oriented Programming in Python
Creating Interactive Data Visualization with Object-Oriented Programming in Python using libraries like Matplotlib or Plotly
   Using Matplotlib:
   Using Plotly:
Creating Interactive Educational Tools and Simulations with Object-Oriented Programming in Python
Creating Predictive Maintenance Systems and Condition Monitoring Solutions with Object-Oriented Python
Creating RESTful APIs using Object-Oriented Programming in Python
Data Structures and Algorithms in Python
Debugging Techniques and Tools for Object-Oriented Python Programs
Decorators and Metaclasses in Python
   Decorators:
   Metaclasses:
Design Patterns in Python
Designing and Implementing Microservices Architectures with Object-Oriented Python
   1. Understand Microservices Architecture:
   2. Choose a Framework:
   3. Design Object-Oriented Microservices:
   4. Implement Microservices:
   5. Containerize Microservices:
   6. Manage Configuration and Deployment:
   7. Monitor and Maintain:
   Example:
   Conclusion:
Designing GUI Applications with Object-Oriented Programming in Python
Developing Augmented Reality AR and Virtual Reality VR Applications using Object-Oriented Programming in Python
Developing Automated Trading Systems and Algorithmic Trading Strategies with Object-Oriented Python
Developing Chatbots and Conversational AI using Object-Oriented Programming in Python
Developing Concurrent and Parallel Algorithms with Object-Oriented Programming in Python
Developing Data Governance and Compliance Solutions with Object-Oriented Programming in Python
Developing Desktop Applications using Object-Oriented Programming in Python using libraries like PyQt or Tkinter
   Using Tkinter:
   Using PyQt:
Developing Embedded Systems and Firmware using Object-Oriented Programming in Python
Developing Games with Object-Oriented Programming in Python
Developing Geographic Information Systems GIS and Spatial Analysis Tools with Object-Oriented Python
Developing Geospatial Analysis and Remote Sensing Applications using Object-Oriented Python
   1. Choose Python Libraries:
   2. Object-Oriented Design:
   3. Workflow:
   4. Example Workflow:
   5. Deployment and Integration:
   6. Testing and Documentation:
Developing Medical Imaging and Healthcare Analytics Solutions with Object-Oriented Programming in Python
Developing Natural Language Understanding NLU Systems with Object-Oriented Python
   1. Define a Token Class:
   2. Define a Sentence Class:
   3. Implement a Tokenizer Class:
   4. Define a Parser Class:
   5. Implement a SemanticAnalyzer Class:
   6. Define a NLU Class:
   Usage Example:
   Notes:
Developing Self-driving Car Simulations and Autonomous Vehicle Control Systems with Object-Oriented Python
Developing Simulation and Modeling Applications with Object-Oriented Programming in Python
Distributed Systems and Microservices with Object-Oriented Programming in Python
Encapsulation and Abstraction in Python
Exploring Advanced Python Features for Object-Oriented Programming, such as Metaprogramming, Context Managers, and Descriptors
   Metaprogramming:
   Context Managers:
   Descriptors:
Exploring Bioinformatics and Computational Biology Applications with Object-Oriented Programming in Python
Exploring Computational Fluid Dynamics CFD Simulations with Object-Oriented Python
Exploring Computational Geometry and Algorithms with Object-Oriented Python
   1. Understanding Computational Geometry Concepts:
   2. Implementing Basic Geometric Objects:
   3. Algorithms and Data Structures:
   4. Visualization:
   5. Optimization and Advanced Topics:
   Sample Code (Point Class):
Exploring Computational Neuroscience and Brain-Machine Interfaces with Object-Oriented Python
Exploring Computational Social Science and Social Network Analysis with Object-Oriented Python
   1. Understanding Computational Social Science (CSS) and Social Network Analysis (SNA)
   2. Python Libraries for CSS and SNA
   3. Object-Oriented Python Approach
   4. Analyze and Visualize Data
Exploring Ethical AI and Bias Mitigation Strategies in Object-Oriented Python Applications
Exploring Explainable AI XAI and Model Interpretability Techniques with Object-Oriented Python
Exploring Future Trends and Innovations in Object-Oriented Programming with Python
Exploring Quantum Chemistry Simulations and Molecular Modeling with Object-Oriented Python
   1. Understanding Quantum Chemistry Basics:
   2. Python Libraries for Quantum Chemistry:
   3. Object-Oriented Programming (OOP) Concepts:
   4. Building Molecular Models in Python:
   5. Quantum Chemistry Simulations:
   6. Visualization:
   Example Code Snippet:
   Tips:
Exploring Quantum Computing Algorithms and Simulations with Object-Oriented Python
   Setting Up the Environment
   Building Quantum Circuits
   Simulating Quantum Circuits
   Object-Oriented Approach
   Conclusion
Extending Python with CC++ using Object-Oriented Approach
Extending Python's Capabilities with Custom Data Types and Structures
   1. Classes
   2. Namedtuples
   3. Dataclasses (Python 3.7+)
   4. Custom Collections
   5. Third-party Libraries
Financial Modeling and Quantitative Analysis with Object-Oriented Programming in Python
   1. Understanding Financial Concepts:
   2. Choose the Right Libraries:
   3. Design Object-Oriented Architecture:
   4. Implement Classes and Methods:
   5. Utilize Design Patterns:
   6. Test r Code:
   7. Optimize Performance:
   8. Document r Code:
   9. Stay Updated:
   Example:
GUI Testing and Automation with Object-Oriented Programming in Python
Image Processing and Computer Vision with Object-Oriented Programming in Python
Implementing Asynchronous Programming Patterns with Object-Oriented Programming in Python asyncio
Implementing Audio Processing and Digital Signal Processing Algorithms with Object-Oriented Programming in Python
Implementing Behavioral Analysis and Anomaly Detection Systems using Object-Oriented Programming in Python
Implementing Blockchain and Cryptocurrency Solutions with Object-Oriented Python
Implementing Evolutionary Algorithms and Genetic Programming with Object-Oriented Python
Implementing Finite State Machines FSMs with Object-Oriented Programming in Python
Implementing Game Development Frameworks and Engines with Object-Oriented Python
Implementing Game Theory and Mechanism Design Algorithms with Object-Oriented Python
Implementing Machine Learning Models with Object-Oriented Programming in Python
Implementing Natural Language Generation NLG Systems with Object-Oriented Python
Implementing Quantum Machine Learning Algorithms with Object-Oriented Python
Implementing Reinforcement Learning Algorithms and Autonomous Agents with Object-Oriented Python
Inheritance and Method Resolution Order in Python
   Inheritance:
   Method Resolution Order (MRO):
Inheritance and Polymorphism in Python
   Inheritance:
   Polymorphism:
Integrating External APIs and Services with Object-Oriented Python Applications
   1. Choose an API
   2. Install Required Libraries
   3. Design Object-Oriented Structure
   4. Create API Wrapper Class
   5. Implement Authentication
   6. Define Data Models
   7. Make API Requests
   8. Error Handling
   Example Code:
   Tips:
Integrating Hardware Interfaces and Sensors with Object-Oriented Python for IoT Applications
Introduction to Object-Oriented Programming in Python
   Classes and Objects:
   Attributes and Methods:
   Inheritance:
   Encapsulation:
   Polymorphism:
   Conclusion:
Machine Learning and Data Science Applications with Object-Oriented Programming in Python
Metaprogramming and Reflection in Python
   Reflection:
   Metaprogramming:
   Use Cases:
Mobile App Development with Object-Oriented Programming in Python using frameworks like Kivy or BeeWare
Natural Language Processing NLP and Text Analysis using Object-Oriented Programming in Python
   1. Object-Oriented Design:
      TextData Class:
      NLPProcessor Class:
      TextAnalyzer Class:
   2. Libraries for NLP:
   3. Example Implementation:
Networking and Socket Programming with Object-Oriented Approach in Python
   Object-Oriented Approach:
   Socket Programming in Python:
   Example:
   Explanation:
Object-Oriented Database Programming in Python
Object-Oriented Design Principles in Python
Operator Overloading in Python
Performance Optimization Strategies for Object-Oriented Python Applications
Robotics and IoT Internet of Things Applications with Object-Oriented Programming in Python
Security and Cryptography with Object-Oriented Programming in Python
Unit Testing and Test-Driven Development in Python
   Unit Testing with unittest:
   Test-Driven Development (TDD) with unittest:
   Unit Testing with pytest:
   Test-Driven Development (TDD) with pytest:
Web Development with Object-Oriented Programming in Python
Web Scraping and Automation with Object-Oriented Programming in Python
   1. Understand OOP Concepts:
   2. Choose the Right Libraries:
   3. Design r Classes:
   4. Implement the Classes:
   5. Utilize Inheritance and Composition:
   6. Error Handling and Testing:
   7. Modularize r Code:
   8. Follow Best Practices:




نظرات کاربران